Performance of Global Forecast System for the Prediction of Intensity and Track of Very Severe Cyclonic Storm ‘Phailin’ over North Indian Ocean

Author(s):  
V. R. Durai ◽  
S. D. Kotal ◽  
S. K. Roy Bhowmik ◽  
Rashmi Bharadwaj
MAUSAM ◽  
2021 ◽  
Vol 58 (4) ◽  
pp. 481-500
Author(s):  
Y. E. A. RAJ ◽  
A. MUTHUCHAMI ◽  
RM. A. N. RAMANATHAN

MAUSAM ◽  
2021 ◽  
Vol 48 (2) ◽  
pp. 273-282
Author(s):  
AKHILESH GUPTA ◽  
U. C. MOHANTY

ABSTRACT. The severe cyclonic storm with a core of hurricane winds of 4-11 May 1990, which crossed the Indian east coast near Machilipatnarn (Andhra Pradesh), was one of the most intense cyclones in recent years over the Bay of Bengal region of the north Indian Ocean. The storm reported the minimum sea level pressure of 912 hPa, the lowest observed value for any cyclone in the region. The storm exhibited certain interesting structural characteristics. The most striking  feature observed was the formation of secondary convective rings wrapped around the primary eyewall. These features were observed for nearly two days by four cyclone detection radars (CDR) located on the east coast of India. The paper presents an analysis of these features. We find that the double eye-wall structure of the storm has undergone a repetitive cycle characterized by the contraction of the outer eyewall and the weakening of the inner eyewall during the life of the cyclone. These interesting characteristics are observed for the first time in the north Indian Ocean for any cyclone. Some of the related aspects of double eyewall features, such as, the possible role of double eyewall structure on the recurvature or turning of the storm and the effect of land obstacle in the development of a secondary eyewall are discussed.        


Oceans ◽  
2021 ◽  
Vol 2 (3) ◽  
pp. 648-674
Author(s):  
Prabodha Kumar Pradhan ◽  
Vinay Kumar ◽  
Sunilkumar Khadgarai ◽  
S. Vijaya Bhaskara Rao ◽  
Tushar Sinha ◽  
...  

The intensity and frequency variability of cyclones in the North Indian Ocean (NIO) have been amplified over the last few decades. The number of very severe cyclonic storms (VSCSs) over the North Indian Ocean has increased over recent decades. “Phailin”, an extreme severe cyclonic storm (ESCS), occurred during 8–13 October 2013 over the Bay of Bengal and made landfall near the Gopalpur coast of Odisha at 12 UTC on 12 October. It caused severe damage here, as well as in the coastal Odisha, Andhra Pradesh, and adjoining regions due to strong wind gusts (~115 knot/h), heavy precipitation, and devastating storm surges. The fidelity of the WRF model in simulating the track and intensity of tropical cyclones depends on different cloud microphysical parameterization schemes. Thus, four sensitivity simulations were conducted for Phailin using double-moment and single-moment microphysical (MP) parameterization schemes. The experiments were conducted to quantify and characterize the performance of such MP schemes for Phailin. The simulations were performed by the advanced weather research and forecasting (WRF-ARW) model. The model has two interactive domains covering the entire Bay of Bengal and adjoining coastal Odisha on 25 km and 8.333 km resolutions. Milbrandt–Yau (MY) double-moment and WRF single-moment microphysical schemes, with 6, 5, and 3 classes of hydrometeors, i.e., WSM6, WSM5, and WSM3, were used for the simulation. Experiments for Phailin were conducted for 126 h, starting from 00 UTC 08 October to 06 UTC 13 October 2013. It was found that the track, intensity, and structure of Phailin are highly sensitive to the different microphysical parameterization schemes. Further, the precipitation and cloud distribution were studied during the ESCS stage of Phailin. The microphysics schemes (MY, WSM3, WSM5, WSM6), along with Grell–Devenyi ensemble convection scheme predicted landfall of Phailin over the Odisha coast with significant track errors. Supply of moisture remains a more crucial component than SST and wind shear for rapid intensification of the Phailin 12 h before landfall over the Bay of Bengal. Finally, the comparison of cyclone formation between two decades 2001–2010 and 2011–2020 over the Bay of Bengal inferred that the increased numbers of VSCS are attributed to the supply of abundant moisture at low levels in the recent decade 2011–2020.


MAUSAM ◽  
2021 ◽  
Vol 65 (1) ◽  
pp. 37-48
Author(s):  
Sunitha DeviS ◽  
Somnath Dutta ◽  
K Prasad

This paper discusses the energetics aspects of two tropical cyclones formed over the north Indian Ocean during 2007, viz., the Super Cyclonic Storm (GONU) and the Very Severe Cyclonic Storm (SIDR). From the analysis of  various energetics terms such as the  Eddy Available Potential Energy (AE), Zonal Available Potential Energy (AZ), Zonal Kinetic Energy (KZ), Eddy Kinetic Energy (KE) and their generation and inter-conversions i.e., G(AE), G(AZ), C(AE, KE), C(AZ, KZ), C(KZ, KE) and C(AZ, AE)  have  been computed on day to day basis during the periods of their intensifications over the domain 5° N to 25° N, 55° E to 75° E in respect of ‘GONU’ and 5° N to 25° N, 77° E to 97° E for ‘SIDR’. Besides the above, the area averaged value of s (Sigma), the vertically averaged Moist Static Energy (MSE), has also been computed on each day. Day-to-day evolution of these parameters is mapped and described. Some of the distinguishing features in the energetic of these two intense vortices which formed in entirely different climatological settings have been brought out. It is noticed that in the case of ‘GONU’, though both barotropic and baroclinic energy conversions have taken place during the life cycle, the intensification phase is characterized by an enhancement in AE, KE and vertically integrated Moist Static Energy. Enhancement in AE can be attributed to the generation of AE, which may again be attributed to the asymmetric latent heat of condensation associated with the asymmetric rainfall in the cyclone field. Enhancement in KE may be attributed to the enhancement in both barotropic and baroclinic conversion into KE. Though most of these observations made for ‘GONU’ are found to be attributable to ‘SIDR’ as well, the intensification of ‘SIDR’ appears to have more similarity to that of a typical growing mid-latitude baroclinic wave. In this case, the enhancement in AE, could also be attributed to positive C(AZ,AE), which is mainly due to interaction with mid-latitude baroclinic westerly wave. The energetics analysis also indicates that GONU had helped in the enhancement of seasonal mean meridional circulation where as the SIDR had inhibited the enhancement of seasonal mean meridional circulation.  


MAUSAM ◽  
2021 ◽  
Vol 72 (1) ◽  
pp. 119-128
Author(s):  
MEDHA DESHPANDE ◽  
RADHIKA KANASE ◽  
R. PHANI MURALI KRISHNA ◽  
SNEHLATA TIRKEY ◽  
P. MUKHOPADHYAY ◽  
...  

2020 ◽  
Author(s):  
Soumen Chatterjee

Abstract. Having a total coastal tract of about 7,516 km with 5,400 km long mainland coastline, India is highly vulnerable to natural hazards like tropical cyclones (TCs). The analysis based on the historical dataset (1891–2019) of TCs over North Indian Ocean (NIO) also claims that the four coastal states (Andhra Pradesh, Odisha, Tamil Nadu and West Bengal) and one union territory (Pondicherry) on the east coast frequently face cyclonic storm than other coastal parts of India. The seasonal distribution (Pre-monsoon, Monsoon and Post-monsoon) of cyclonic storms over the Arabian Sea (AS) and Bay of Bengal (BoB) in last 150 years also help to unfold the fact that the Odisha and West Bengal coast are exposed to TCs mostly during the monsoon season (June to September) encompassing with strong winds, heavy rainfall and high storm surge. The extremely severe cyclonic storm (ESCS) Fani is the rarest summer cyclones, the first one in 43 years to strike the coastal part of Odisha on May 3, 2019 and one of the three worst cyclones in last 150 years with a sustained surface wind speed of 175–180 kmph. Odisha has been affected horribly due to the vulnerability of Fani. Although the death toll was limited within 64 due to rapid evacuation of nearly 1.68 million people, the killer cyclone has caused irreparable damages in social sectors (housing, education and food security), productive sectors (agriculture, fisheries and livestock) and also informative sectors (power, telecommunication, road, water facilities and public buildings). The estimated costs have reached nearly 4.18 billion USD only in Odisha. The southern part of West Bengal has also affected badly due to intense downpour and very high storm surges (2–3 m above mean sea level). To map the flooded areas of Odisha and West Bengal due to intense rainfall (cause inland flooding) and storm surges (cause coastal flooding), the Sentinel-1 SAR GRD dataset has also been used in Google Earth Engine (GEE) environment to link with the deadly cyclone Fani. So, the present study successfully advocates the historical background of TCs over NIO with particular reference to ESCS Fani including its meteorological variability, preparedness and the trail of devastation.


MAUSAM ◽  
2021 ◽  
Vol 71 (3) ◽  
pp. 357-376
Author(s):  
Kashyapi A ◽  
Shripad V K ◽  
Natu J C

During 2019, in all 12 intense low pressure systems formed over the Indian Seas. These include; one Super cyclonic storm (KYARR), one extremely severe cyclonic storm (FANI), 4 very Severe Cyclonic Storms (VAYU, HIKAA, MAHA & BULBUL), 2 Cyclonic Storms (PABUK & PAWAN), 3 Deep Depressions and  1 Depression. Out of these 12 systems, 4 systems formed over the Bay of Bengal and 8 over the Arabian Sea. Arabian Sea remained exceptionally active in terms of cyclogenesis this year, especially in the post monsoon season. The season-wise distribution had been one cyclonic storm in winter, one in pre-monsoon season,  2 depressions and 2 very severe cyclonic storms during the monsoon season and 4 cyclonic storms and 3 depressions in Post monsoon season.


Sign in / Sign up

Export Citation Format

Share Document