scholarly journals Majority-Class Aware Support Vector Domain Oversampling for Imbalanced Classification Problems

Author(s):  
Markus Kächele ◽  
Patrick Thiam ◽  
Günther Palm ◽  
Friedhelm Schwenker
Author(s):  
Anantvir Singh Romana

Accurate diagnostic detection of the disease in a patient is critical and may alter the subsequent treatment and increase the chances of survival rate. Machine learning techniques have been instrumental in disease detection and are currently being used in various classification problems due to their accurate prediction performance. Various techniques may provide different desired accuracies and it is therefore imperative to use the most suitable method which provides the best desired results. This research seeks to provide comparative analysis of Support Vector Machine, Naïve bayes, J48 Decision Tree and neural network classifiers breast cancer and diabetes datsets.


Mathematics ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 936
Author(s):  
Jianli Shao ◽  
Xin Liu ◽  
Wenqing He

Imbalanced data exist in many classification problems. The classification of imbalanced data has remarkable challenges in machine learning. The support vector machine (SVM) and its variants are popularly used in machine learning among different classifiers thanks to their flexibility and interpretability. However, the performance of SVMs is impacted when the data are imbalanced, which is a typical data structure in the multi-category classification problem. In this paper, we employ the data-adaptive SVM with scaled kernel functions to classify instances for a multi-class population. We propose a multi-class data-dependent kernel function for the SVM by considering class imbalance and the spatial association among instances so that the classification accuracy is enhanced. Simulation studies demonstrate the superb performance of the proposed method, and a real multi-class prostate cancer image dataset is employed as an illustration. Not only does the proposed method outperform the competitor methods in terms of the commonly used accuracy measures such as the F-score and G-means, but also successfully detects more than 60% of instances from the rare class in the real data, while the competitors can only detect less than 20% of the rare class instances. The proposed method will benefit other scientific research fields, such as multiple region boundary detection.


IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 27789-27801 ◽  
Author(s):  
Hongxin Xue ◽  
Yanping Bai ◽  
Hongping Hu ◽  
Ting Xu ◽  
Haijian Liang

2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Mohammad Javad Abdi ◽  
Seyed Mohammad Hosseini ◽  
Mansoor Rezghi

We develop a detection model based on support vector machines (SVMs) and particle swarm optimization (PSO) for gene selection and tumor classification problems. The proposed model consists of two stages: first, the well-known minimum redundancy-maximum relevance (mRMR) method is applied to preselect genes that have the highest relevance with the target class and are maximally dissimilar to each other. Then, PSO is proposed to form a novel weighted SVM (WSVM) to classify samples. In this WSVM, PSO not only discards redundant genes, but also especially takes into account the degree of importance of each gene and assigns diverse weights to the different genes. We also use PSO to find appropriate kernel parameters since the choice of gene weights influences the optimal kernel parameters and vice versa. Experimental results show that the proposed mRMR-PSO-WSVM model achieves highest classification accuracy on two popular leukemia and colon gene expression datasets obtained from DNA microarrays. Therefore, we can conclude that our proposed method is very promising compared to the previously reported results.


2021 ◽  
Vol 40 (1) ◽  
pp. 1481-1494
Author(s):  
Geng Deng ◽  
Yaoguo Xie ◽  
Xindong Wang ◽  
Qiang Fu

Many classification problems contain shape information from input features, such as monotonic, convex, and concave. In this research, we propose a new classifier, called Shape-Restricted Support Vector Machine (SR-SVM), which takes the component-wise shape information to enhance classification accuracy. There exists vast research literature on monotonic classification covering monotonic or ordinal shapes. Our proposed classifier extends to handle convex and concave types of features, and combinations of these types. While standard SVM uses linear separating hyperplanes, our novel SR-SVM essentially constructs non-parametric and nonlinear separating planes subject to component-wise shape restrictions. We formulate SR-SVM classifier as a convex optimization problem and solve it using an active-set algorithm. The approach applies basis function expansions on the input and effectively utilizes the standard SVM solver. We illustrate our methodology using simulation and real world examples, and show that SR-SVM improves the classification performance with additional shape information of input.


2020 ◽  
Vol 203 ◽  
pp. 106116
Author(s):  
Jianan Wei ◽  
Haisong Huang ◽  
Liguo Yao ◽  
Yao Hu ◽  
Qingsong Fan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document