Kinematic Analysis and Control of a 3-DOF Parallel Mechanism

Author(s):  
Hongyang Zhang ◽  
Xianmin Zhang
2010 ◽  
Vol 43 ◽  
pp. 114-118
Author(s):  
Zhong Jie Chen ◽  
Qui Ju Zhang ◽  
Chun Jian Hua

In this paper, the kinematic analysis on a 3-DOF Delta parallel mechanism was carried out and the relationship models between the end cell output motions and the master arms input parameters were established. The forward and inverse solutions to position, velocity and acceleration were deduced and then verified by simulation, the curves that gotten by calculation and simulation were smooth, and no mutations or jumps appeared. In the meantime, based on the kinematic analysis, the impact of Jacobian matrix on the manipulator singular configuration was discussed, and the maneuverability in the reachable space was obtain quantitatively, meanwhile, the value of cond(C(Jv)) was located in the acceptable range, which approached to the isotropic value, so, the theory basis for optimal design was provided. The methods and conclusions in this paper are helpful to the design and control of 3-DOF Delta parallel mechanism.


Author(s):  
DU Hui ◽  
GAO Feng ◽  
PAN Yang

A novel 3-UP3R parallel mechanism with six degree of freedoms is proposed in this paper. One most important advantage of this mechanism is that the three translational and three rotational motions are partially decoupled: the end-effector position is only determined by three inputs, while the rotational angles are relative to all six inputs. The design methodology via GF set theory is brought out, using which the limb type can be determined. The mobility of the end-effector is analyzed. After that, the kinematic and velocity models are formulated. Then, workspace is studied, and since the robot is partially decoupled, the reachable workspace is also the dexterous workspace. In the end, both local and global performances are discussed using conditioning indexes. The experiment of real prototype shows that this mechanism works well and may be applied in many fields.


2013 ◽  
Vol 816-817 ◽  
pp. 821-824
Author(s):  
Xue Mei Niu ◽  
Guo Qin Gao ◽  
Zhi Da Bao

Kinematic analysis plays an important role in the research of parallel kinematic mechanism. This paper addresses a novel forward kinematic solution based on RBF neural network for a novel 2PRRR-PPRR redundantly actuated parallel mechanism. Simulation results illustrate the validity and feasibility of the kinematic analysis method.


Author(s):  
Jérôme Landuré ◽  
Clément Gosselin

This article presents the kinematic analysis of a six-degree-of-freedom six-legged parallel mechanism of the 6-PUS architecture. The inverse kinematic problem is recalled and the Jacobian matrices are derived. Then, an algorithm for the geometric determination of the workspace is presented, which yields a very fast and accurate description of the workspace of the mechanism. Singular boundaries and a transmission ratio index are then introduced and studied for a set of architectural parameters. The proposed analysis yields conceptual architectures whose properties can be adjusted to fit given applications.


Motor Control ◽  
2006 ◽  
Vol 10 (3) ◽  
pp. 244-264 ◽  
Author(s):  
Cheryl M. Glazebrook ◽  
Digby Elliott ◽  
James Lyons

2013 ◽  
Vol 834-836 ◽  
pp. 1414-1417
Author(s):  
Jia Cheng Cai ◽  
Hai Tao Wu ◽  
Tian Chang Yao ◽  
Da Wei Xu

In view of the existing problem of the traditional aluminium ingot stacking practices, it was important significance to research and develop a stack-manipulator that includes various functions to do portage and stack. According to the demand of stacking, the motion system of the Stack-manipulator based on four degrees was finished. The kinematics equation of the manipulator was set up using the D-H theory, On this base, Some of the kinematics problems of this stack-manipulator were discussed and these reliable basis were provided for the research of the manipulators dynamics and control and trajectory planning.


Sign in / Sign up

Export Citation Format

Share Document