Maximum Throughput Network Routing Subject to Fair Flow Allocation

Author(s):  
Edoardo Amaldi ◽  
Stefano Coniglio ◽  
Leonardo Taccari
2011 ◽  
Vol 31 (2) ◽  
pp. 332-334
Author(s):  
Shao-qiong ZHOU ◽  
Yi XU ◽  
Li JIANG ◽  
Rui WANG

2016 ◽  
Vol 26 (1) ◽  
pp. 17
Author(s):  
Carlos Deyvinson Reges Bessa

ABSTRACTThis work aims to study which wireless sensor network routing protocol is more suitable for Smart Grids applications, through simulation of AODV protocols, AOMDV, DSDV and HTR in the NS2 simulation environment. Was simulated a network based on a residential area with 47 residences, with one node for each residence and one base station, located about 25m from the other nodes. Many parameters, such as packet loss, throughput, delay, jitter and energy consumption were tested.  The network was increased to 78 and 93 nodes in order to evaluate the behavior of the protocols in larger networks. The tests proved that the HTR is the routing protocol that has the best results in performance and second best in energy consumption. The DSDV had the worst performance according to the tests.Key words.- Smart grid, QoS analysis, Wireless sensor networks, Routing protocols.RESUMENEste trabajo tiene como objetivo estudiar el protocolo de enrutamiento de la red de sensores inalámbricos es más adecuado para aplicaciones de redes inteligentes, a través de la simulación de protocolos AODV, AOMDV, DSDV y HTR en el entorno de simulación NS2. Se simuló una red basada en una zona residencial con 47 residencias, con un nodo para cada residencia y una estación base, situada a unos 25 metros de los otros nodos. Muchos parámetros, tales como la pérdida de paquetes, rendimiento, retardo, jitter y el consumo de energía se probaron. La red se incrementó a 78 y 93 nodos con el fin de evaluar el comportamiento de los protocolos de redes más grandes. Las pruebas demostraron que el HTR es el protocolo de enrutamiento que tiene los mejores resultados en el rendimiento y el segundo mejor en el consumo de energía. El DSDV tuvo el peor desempeño de acuerdo a las pruebas.Palabras clave.- redes inteligentes, análisis de calidad de servicio, redes de sensores inalámbricas, protocolos de enrutamiento.


2021 ◽  
pp. 1-11
Author(s):  
Shu Zhang ◽  
Jianhua Chen

 This paper analyzes the security algorithm and energy cost of wireless sensor networks in depth, and designs and implements a series of energy-optimized security solutions to ensure the secure establishment and operation of wireless sensor networks. This paper proposes an improved Ad hoc network routing protocol based on energy control. It introduces a low-energy balanced routing algorithm to reduce routing transmission energy consumption, balance network traffic, and improve the energy control performance of network routing protocols. The protocol uses a cross-layer design in this way, the route selection combines the information of the link the remaining energy. A joint function is formed by the transmit power level remaining energy. The joint function of all nodes on the path is used as the basis for route selection and applied to the route discovery stage. At the same time, the protocol introduces edge degree parameters in the establishment process, the idea of minimum energy consumption path and the introduction of energy consumption ratio parameters in the cluster skull backbone network generation process are adopted to realize the energy optimization of the path establishment process. At the same time, the protocol uses the message interaction mechanism in the path establishment process to implement a node security authentication scheme based on secret shared information without adding any routing communication messages, which effectively prevents the passive and active attacks of the attacker on the network. The results of simulation experiments prove that the secure routing protocol achieves the network’s balanced energy consumption while ensuring the secure communication of the network, and solves the energy problem.


Electronics ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1138
Author(s):  
Yu Lu ◽  
Liu Chang ◽  
Jingwen Luo ◽  
Jia Wu

With the rapid popularization of 5G communication and internet of things technologies, the amount of information has increased significantly in opportunistic social networks, and the types of messages have become more and more complex. More and more mobile devices join the network as nodes, making the network scale increase sharply, and the tremendous amount of datatransmission brings a more significant burden to the network. Traditional opportunistic social network routing algorithms lack effective message copy management and relay node selection methods, which will cause problems such as high network delay and insufficient cache space. Thus, we propose an opportunistic social network routing algorithm based on user-adaptive data transmission. The algorithm will combine the similarity factor, communication factor, and transmission factor of the nodes in the opportunistic social network and use information entropy theory to adaptively assign the weights of decision feature attributes in response to network changes. Also, edge nodes are effectively used, and the nodes are divided into multiple communities to reconstruct the community structure. The simulation results show that the algorithm demonstrates good performance in improving the information transmission’s success rate, reducing network delay, and caching overhead.


Symmetry ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1227
Author(s):  
Shyam Sundar Santra ◽  
Prabhakaran Victor ◽  
Mahadevan Chandramouleeswaran ◽  
Rami Ahmad El-Nabulsi ◽  
Khaled Mohamed Khedher ◽  
...  

Graph connectivity theory is important in network implementations, transportation, network routing and network tolerance, among other things. Separation edges and vertices refer to single points of failure in a network, and so they are often sought-after. Chandramouleeswaran et al. introduced the principle of semiring valued graphs, also known as S-valued symmetry graphs, in 2015. Since then, works on S-valued symmetry graphs such as vertex dominating set, edge dominating set, regularity, etc. have been done. However, the connectivity of S-valued graphs has not been studied. Motivated by this, in this paper, the concept of connectivity in S-valued graphs has been studied. We have introduced the term vertex S-connectivity and edge S-connectivity and arrived some results for connectivity of a complete S-valued symmetry graph, S-path and S-star. Unlike the graph theory, we have observed that the inequality for connectivity κ(G)≤κ′(G)≤δ(G) holds in the case of S-valued graphs only when there is a symmetry of the graph as seen in Examples 3–5.


Author(s):  
Andrew Ian Stone ◽  
Steven DiBenedetto ◽  
Michelle Mills Strout ◽  
Daniel Massey

Sign in / Sign up

Export Citation Format

Share Document