Experimental Study on Timber-Framed Masonry Structures

Author(s):  
Andreea Duţu ◽  
Hiroyasu Sakata ◽  
Yoshihiro Yamazaki
2014 ◽  
Vol 624 ◽  
pp. 189-196 ◽  
Author(s):  
Valeria Corinaldesi ◽  
Jacopo Donnini ◽  
Giorgia Mazzoni

The use of composites with cement matrix seems to acquire an increasing interest in applications to masonry structures, due to their low impact, and a deeper understanding of the mechanical interaction between support and reinforcement is certainly necessary. The effectiveness of these interventions strongly depends on the bond between strengthening material and masonry, on the fibers/matrix interface, as well as on the mechanical properties of the masonry substrate [1]. In this work the attention was focused on the possible improvement of the bond between FRCM and masonry by means of an inorganic primer, which can be spread on the ceramic support before the application of FRCM reinforcement. Two different kinds of brick were tested, in order to simulate more or less porous masonry supports. Results obtained showed that, independently on the kind of brick used (more or less porous) the presence of an inorganic primer always improves bond between masonry support and the cementitiuos matrix of FRCM. In fact, the cementitous matrix of FRCM has been studied and optimized in order to guarantee the best fibers/matrix interface, while it is not necessarily the best option for improving the adhesion with the masonry support. In particular, very effective seems to be the use of very fine inorganic particles (at nanometric scale), which proved to be able to assure the best results in terms of bond strength. Also the fresh consistence of the primer seemed to influence the final result.


2012 ◽  
Vol 12 (11) ◽  
pp. 3441-3454 ◽  
Author(s):  
N. Ahmad ◽  
Q. Ali ◽  
M. Ashraf ◽  
B. Alam ◽  
A. Naeem

Abstract. Half-Dressed rubble stone (DS) masonry structures as found in the Himalayan region are investigated using experimental and analytical studies. The experimental study included a shake table test on a one-third scaled structural model, a representative of DS masonry structure employed for public critical facilities, e.g. school buildings, offices, health care units, etc. The aim of the experimental study was to understand the damage mechanism of the model, develop damage scale towards deformation-based assessment and retrieve the lateral force-deformation response of the model besides its elastic dynamic properties, i.e. fundamental vibration period and elastic damping. The analytical study included fragility analysis of building prototypes using a fully probabilistic nonlinear dynamic method. The prototypes are designed as SDOF systems assigned with lateral, force-deformation constitutive law (obtained experimentally). Uncertainties in the constitutive law, i.e. lateral stiffness, strength and deformation limits, are considered through random Monte Carlo simulation. Fifty prototype buildings are analyzed using a suite of ten natural accelerograms and an incremental dynamic analysis technique. Fragility and vulnerability functions are derived for the damageability assessment of structures, economic loss and casualty estimation during an earthquake given the ground shaking intensity, essential within the context of risk assessment of existing stock aiming towards risk mitigation and disaster risk reduction.


Structures ◽  
2021 ◽  
Vol 31 ◽  
pp. 602-612
Author(s):  
Peizhen Li ◽  
Shiran Xu ◽  
Zheng Lu ◽  
Jin Li

2017 ◽  
Vol 747 ◽  
pp. 594-603 ◽  
Author(s):  
Hu Xu ◽  
Hao Wu ◽  
Cristina Gentilini ◽  
Qi Wang Su ◽  
Shi Chun Zhao

In this study, confined masonry specimens with regular arranged openings are tested in order to study the influence of different enhancements of the columns on seismic failure modes. In particular, five brick masonry walls and three half-scale two-storey masonry structures are tested under quasi-static loads. The experimental results show that increasing column ratio improves the seismic behavior of the wall specimens to some extent, but an excessive reinforcement ratio of the columns decreases the ductility. The global failure mode of the two-storey masonry structures is modified by inserting iron wires in the mortar bed joints, improving the structural collapse resistant capacity effectively.


Fibers ◽  
2020 ◽  
Vol 8 (11) ◽  
pp. 68
Author(s):  
Jennifer D’Anna ◽  
Giuseppina Amato ◽  
Jianfei Chen ◽  
Giovanni Minafò ◽  
Lidia La Mendola

Fibre-reinforced cementitious matrix (FRCM) composites have been effectively used during the last ten years for the strengthening of existing concrete and masonry structures. These composite materials are made of medium- and high-strength fibre meshes embedded in inorganic matrices. Synthetic fibres are the ones that are currently the most used; however, natural fibres, such as basalt fibres, have recently been receiving growing attention. This work presents an extensive experimental study on the mechanical characterisation of a primed basalt fibre bidirectional grid. Fifty monotonic tensile tests on basalt grid strips were performed by varying different parameters, such as the dimension of the specimens, the clamping system, the measurement system and the test rate. Some of the tests were carried out using a video-extensometer to measure each specimen’s strain. The aim of the study was to find the most suitable setup for the tensile characterisation of basalt textiles, in particular, to prevent slippage of the samples at the gripping area and fully exploit the tensile capacity of the grid.


Sign in / Sign up

Export Citation Format

Share Document