Development of an Innovative 3D Simulator for Structured Polymeric Fibrous Materials and Liquid Droplets

Author(s):  
Joana M. R. Curto ◽  
António O. Mendes ◽  
Eduardo L. T. Conceição ◽  
António T. G. Portugal ◽  
Paulo T. Fiadeiro ◽  
...  
2019 ◽  
Vol 125 (14) ◽  
pp. 145304 ◽  
Author(s):  
M. Jamali ◽  
H. Vahedi Tafreshi ◽  
B. Pourdeyhimi

2014 ◽  
Vol 29 (2) ◽  
pp. 225-231 ◽  
Author(s):  
Pooya Saketi ◽  
Juha Hirvonen ◽  
Yuli Lai ◽  
Christian Ganser ◽  
Christian Teichert ◽  
...  

Abstract Measuring contact angles on single fibers enables the separation of structural factors from surface chemistry factors. Current Drop-on-Fiber (DOF) contact angle measurement methods for natural fibers generally, and for pulp/paper fibers specifically, present a number of challenges. These are manipulation and mounting of the microscale fibers, straightening natural fibers to produce repeatable axisymmetric droplet conformation, measuring the droplet volume excluding the fiber volume and also human errors due to manually performed tasks. This paper presents a novel method to measure contact angles in DOF systems and overcome the above mentioned challenges using microrobots. The proposed microrobotic platform is capable of handling natural and synthetic fibrous materials in microscale, and dispensing probe liquid droplets down to 12 nl. It measures contact angle values using computer vision and a droplet-profiledetection algorithm. It reports the contact angle values as a function of volume of the droplet. The paper validates the capabilities of the proposed platform by applying three commonly used probe liquids: deionized water, ethylene glycol and diiodomethane for measuring contact angles on glass and pulp fibers. Finally, the results are compared with a picoliter contact angle measurement approach.


Author(s):  
Matthew R. Libera

The liquid droplets produced by atomization processes are believed to undergo substantial supercooling during solidification, because the catalytic heterogeneities, for statistical reasons, tend to be isolated in the larger droplets. This supercooling can lead to the nucleation of metastable phases. As part of a study on the effect of liquid supercooling on nonequilibrium solidification, three binary Fe-Ni alloys have been produced by conventional argon atomization (Fe-20Ni, Fe-30Ni, and Fe-40Ni). The primary variables in these experiments are: i) the alloy composition; and ii) the powder particle diameter (inversely proportional to supercooling). Of particular interest in this system is the competitive nucleation kinetics between the stable fee and metastable bec phases. Bcc is expected to nucleate preferentially with decreasing %Ni and decreasing particle diameter.


Author(s):  
C.M. Teng ◽  
T.F. Kelly ◽  
J.P. Zhang ◽  
H.M. Lin ◽  
Y.W. Kim

Spherical submicron particles of materials produced by electrohydrodynamic (EHD) atomization have been used to study a variety of materials processes including nucleation of alternative crystallization phases in iron-nickel and nickel-chromium alloys, amorphous solidification in submicron droplets of pure metals, and quasi-crystal formation in nickel-chromium alloys. Some experiments on pure nickel, nickel oxide single crystals, the nickel/nickel(II) oxide interface, and grain boundaries in nickel monoxide have been performed by STEM. For these latter studies, HREM is the most direct approach to obtain particle crystal structures at the atomic level. Grain boundaries in nickel oxide have also been investigated by HREM. In this paper, we present preliminary results of HREM observations of NiO growth on submicron spheres of pure nickel.Small particles of pure nickel were prepared by EHD atomization. For the study of pure nickel, 0.5 mm diameter pure nickel wire (99.9975%) is sprayed directly in the EHD process. The liquid droplets solidify in free-flight through a vacuum chamber operated at about 10-7 torr.


Author(s):  
Krishan Chawla
Keyword(s):  

2005 ◽  
Vol 1 (6) ◽  
pp. 91-101
Author(s):  
V. P. Sergeiev ◽  
Keyword(s):  

2020 ◽  
Author(s):  
R. Kevin Tindell ◽  
Lincoln Busselle ◽  
Julianne Holloway

<div>Musculoskeletal interfacial tissues consist of complex gradients in structure, cell phenotype, and biochemical signaling that are important for function. Designing tissue engineering strategies to mimic these types of gradients is an ongoing challenge. In particular, new fabrication techniques that enable precise spatial control over fiber alignment are needed to better mimic the structural gradients present in interfacial tissues, such as the tendon-bone interface. Here, we report a modular approach to spatially controlling fiber alignment using magnetically-assisted electrospinning. Electrospun fibers were highly aligned in the presence of a magnetic field and smoothly transitioned to randomly aligned fibers away from the magnetic field. Importantly, magnetically-assisted electrospinning allows for spatial control over fiber alignment at sub-millimeter resolution along the length of the fibrous scaffold similar to the native structural gradient present in many interfacial tissues. The versatility of this approach was further demonstrated using multiple electrospinning polymers and different magnet configurations to fabricate complex fiber alignment gradients. As expected, cells seeded onto gradient fibrous scaffolds were elongated and aligned on the aligned fibers and did not show a preferential alignment on the randomly aligned fibers. Overall, this fabrication approach represents an important step forward in creating gradient fibrous materials and are promising as tissue-engineered scaffolds for regenerating functional musculoskeletal interfacial tissues. <br></div>


2020 ◽  
Author(s):  
R. Kevin Tindell ◽  
Lincoln Busselle ◽  
Julianne Holloway

<div>Musculoskeletal interfacial tissues consist of complex gradients in structure, cell phenotype, and biochemical signaling that are important for function. Designing tissue engineering strategies to mimic these types of gradients is an ongoing challenge. In particular, new fabrication techniques that enable precise spatial control over fiber alignment are needed to better mimic the structural gradients present in interfacial tissues, such as the tendon-bone interface. Here, we report a modular approach to spatially controlling fiber alignment using magnetically-assisted electrospinning. Electrospun fibers were highly aligned in the presence of a magnetic field and smoothly transitioned to randomly aligned fibers away from the magnetic field. Importantly, magnetically-assisted electrospinning allows for spatial control over fiber alignment at sub-millimeter resolution along the length of the fibrous scaffold similar to the native structural gradient present in many interfacial tissues. The versatility of this approach was further demonstrated using multiple electrospinning polymers and different magnet configurations to fabricate complex fiber alignment gradients. As expected, cells seeded onto gradient fibrous scaffolds were elongated and aligned on the aligned fibers and did not show a preferential alignment on the randomly aligned fibers. Overall, this fabrication approach represents an important step forward in creating gradient fibrous materials and are promising as tissue-engineered scaffolds for regenerating functional musculoskeletal interfacial tissues. <br></div>


2019 ◽  
Vol 16 (3) ◽  
pp. 334-351
Author(s):  
A. S. Mavlyanov ◽  
E. K. Sardarbekova

Introduction. The objective of the research is to study the effect of the complex activation of the alumina raw material on the rheological properties of the ceramic mass. In addition, the authors investigate solutions for the application of optimal coagulation structures based on loams and ash together with plastic certificates.Materials and methods. The authors used the local forest like reserves of clay loams at the BashKarasu, ash fields of the Bishkek Central Heating Centre (BTEC) and plasticizer (sodium naphthenate obtained from alkaline chemical production wastes) as fibrous materials. Moreover, the authors defined technological properties of raw materials within standard laboratory methodology in accordance with current GOSTs.Results. The researchers tested plastic durability on variously prepared masses for the choice of optimal structures. The paper demonstrated the plastic durability of complexly activated compounds comparing with non-activated and mechanically activated compounds. The sensitivity coefficient increased the amount of clay loams by mechanically and complexly activated, which predetermined the possibility of intensifying the process of drying samples based on complexly activated masses.Discussion and conclusions. However, mechanical activation of clay material reduces the period of relaxation and increases the elasticity coefficient of ceramic masses by 1.8–3.4 times, meanwhile decreases elasticity, viscosity and the conventional power during molding, which generally worsens the molding properties of the masses. Сomplex activation of ash-clay material decreases the period of relaxation and provides an increase in elasticity, plasticity of ceramic masses by 46–47%, reduction in viscosity by 1.5–2 times, conventional power on molding by 37–122% in comparison with MA clay loams. Ceramic masses based on spacecraft alumina raw materials belong to the SMT with improved rheological properties; products based on them pass through the mouthpiece for 5–7 seconds.


Sign in / Sign up

Export Citation Format

Share Document