Analyzing Accelerometer Data for Epilepsy Episode Recognition

Author(s):  
José R. Villar ◽  
Manuel Menéndez ◽  
Javier Sedano ◽  
Enrique de la Cal ◽  
Víctor M. González
Keyword(s):  
2020 ◽  
Author(s):  
Anis Davoudi ◽  
Mamoun T. Mardini ◽  
Dave Nelson ◽  
Fahd Albinali ◽  
Sanjay Ranka ◽  
...  

BACKGROUND Research shows the feasibility of human activity recognition using Wearable accelerometer devices. Different studies have used varying number and placement for data collection using the sensors. OBJECTIVE To compare accuracy performance between multiple and variable placement of accelerometer devices in categorizing the type of physical activity and corresponding energy expenditure in older adults. METHODS Participants (n=93, 72.2±7.1 yrs) completed a total of 32 activities of daily life in a laboratory setting. Activities were classified as sedentary vs. non-sedentary, locomotion vs. non-locomotion, and lifestyle vs. non-lifestyle activities (e.g. leisure walk vs. computer work). A portable metabolic unit was worn during each activity to measure metabolic equivalents (METs). Accelerometers were placed on five different body positions: wrist, hip, ankle, upper arm, and thigh. Accelerometer data from each body position and combinations of positions were used in developing Random Forest models to assess activity category recognition accuracy and MET estimation. RESULTS Model performance for both MET estimation and activity category recognition strengthened with additional accelerometer devices. However, a single accelerometer on the ankle, upper arm, hip, thigh, or wrist had only a 0.03 to 0.09 MET increase in prediction error as compared to wearing all five devices. Balanced accuracy showed similar trends with slight decreases in balanced accuracy for detection of locomotion (0-0.01 METs), sedentary (0.13-0.05 METs) and lifestyle activities (0.08-0.04 METs) compared to all five placements. The accuracy of recognizing activity categories increased with additional placements (0.15-0.29). Notably, the hip was the best single body position for MET estimation and activity category recognition. CONCLUSIONS Additional accelerometer devices only slightly enhance activity recognition accuracy and MET estimation in older adults. However, given the extra burden of wearing additional devices, single accelerometers with appropriate placement appear to be sufficient for estimating energy expenditure and activity category recognition in older adults.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Dalton J. Hance ◽  
Katie M. Moriarty ◽  
Bruce A. Hollen ◽  
Russell W. Perry

Abstract Background Studies of animal movement using location data are often faced with two challenges. First, time series of animal locations are likely to arise from multiple behavioral states (e.g., directed movement, resting) that cannot be observed directly. Second, location data can be affected by measurement error, including failed location fixes. Simultaneously addressing both problems in a single statistical model is analytically and computationally challenging. To both separate behavioral states and account for measurement error, we used a two-stage modeling approach to identify resting locations of fishers (Pekania pennanti) based on GPS and accelerometer data. Methods We developed a two-stage modelling approach to estimate when and where GPS-collared fishers were resting for 21 separate collar deployments on 9 individuals in southern Oregon. For each deployment, we first fit independent hidden Markov models (HMMs) to the time series of accelerometer-derived activity measurements and apparent step lengths to identify periods of movement and resting. Treating the state assignments as given, we next fit a set of linear Gaussian state space models (SSMs) to estimate the location of each resting event. Results Parameter estimates were similar across collar deployments. The HMMs successfully identified periods of resting and movement with posterior state assignment probabilities greater than 0.95 for 97% of all observations. On average, fishers were in the resting state 63% of the time. Rest events averaged 5 h (4.3 SD) and occurred most often at night. The SSMs allowed us to estimate the 95% credible ellipses with a median area of 0.12 ha for 3772 unique rest events. We identified 1176 geographically distinct rest locations; 13% of locations were used on > 1 occasion and 5% were used by > 1 fisher. Females and males traveled an average of 6.7 (3.5 SD) and 7.7 (6.8 SD) km/day, respectively. Conclusions We demonstrated that if auxiliary data are available (e.g., accelerometer data), a two-stage approach can successfully resolve both problems of latent behavioral states and GPS measurement error. Our relatively simple two-stage method is repeatable, computationally efficient, and yields directly interpretable estimates of resting site locations that can be used to guide conservation decisions.


2021 ◽  
pp. 158-166
Author(s):  
Noah Balestra ◽  
Gaurav Sharma ◽  
Linda M. Riek ◽  
Ania Busza

<b><i>Background:</i></b> Prior studies suggest that participation in rehabilitation exercises improves motor function poststroke; however, studies on optimal exercise dose and timing have been limited by the technical challenge of quantifying exercise activities over multiple days. <b><i>Objectives:</i></b> The objectives of this study were to assess the feasibility of using body-worn sensors to track rehabilitation exercises in the inpatient setting and investigate which recording parameters and data analysis strategies are sufficient for accurately identifying and counting exercise repetitions. <b><i>Methods:</i></b> MC10 BioStampRC® sensors were used to measure accelerometer and gyroscope data from upper extremities of healthy controls (<i>n</i> = 13) and individuals with upper extremity weakness due to recent stroke (<i>n</i> = 13) while the subjects performed 3 preselected arm exercises. Sensor data were then labeled by exercise type and this labeled data set was used to train a machine learning classification algorithm for identifying exercise type. The machine learning algorithm and a peak-finding algorithm were used to count exercise repetitions in non-labeled data sets. <b><i>Results:</i></b> We achieved a repetition counting accuracy of 95.6% overall, and 95.0% in patients with upper extremity weakness due to stroke when using both accelerometer and gyroscope data. Accuracy was decreased when using fewer sensors or using accelerometer data alone. <b><i>Conclusions:</i></b> Our exploratory study suggests that body-worn sensor systems are technically feasible, well tolerated in subjects with recent stroke, and may ultimately be useful for developing a system to measure total exercise “dose” in poststroke patients during clinical rehabilitation or clinical trials.


2021 ◽  
pp. 101275
Author(s):  
Mạnh Cường Ngô ◽  
Raghavendra Selvan ◽  
Outi Tervo ◽  
Mads Peter Heide-Jørgensen ◽  
Susanne Ditlevsen

Electronics ◽  
2021 ◽  
Vol 10 (14) ◽  
pp. 1715
Author(s):  
Michele Alessandrini ◽  
Giorgio Biagetti ◽  
Paolo Crippa ◽  
Laura Falaschetti ◽  
Claudio Turchetti

Photoplethysmography (PPG) is a common and practical technique to detect human activity and other physiological parameters and is commonly implemented in wearable devices. However, the PPG signal is often severely corrupted by motion artifacts. The aim of this paper is to address the human activity recognition (HAR) task directly on the device, implementing a recurrent neural network (RNN) in a low cost, low power microcontroller, ensuring the required performance in terms of accuracy and low complexity. To reach this goal, (i) we first develop an RNN, which integrates PPG and tri-axial accelerometer data, where these data can be used to compensate motion artifacts in PPG in order to accurately detect human activity; (ii) then, we port the RNN to an embedded device, Cloud-JAM L4, based on an STM32 microcontroller, optimizing it to maintain an accuracy of over 95% while requiring modest computational power and memory resources. The experimental results show that such a system can be effectively implemented on a constrained-resource system, allowing the design of a fully autonomous wearable embedded system for human activity recognition and logging.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Melinda G. Conners ◽  
Théo Michelot ◽  
Eleanor I. Heywood ◽  
Rachael A. Orben ◽  
Richard A. Phillips ◽  
...  

AbstractBackgroundInertial measurement units (IMUs) with high-resolution sensors such as accelerometers are now used extensively to study fine-scale behavior in a wide range of marine and terrestrial animals. Robust and practical methods are required for the computationally-demanding analysis of the resulting large datasets, particularly for automating classification routines that construct behavioral time series and time-activity budgets. Magnetometers are used increasingly to study behavior, but it is not clear how these sensors contribute to the accuracy of behavioral classification methods. Development of effective  classification methodology is key to understanding energetic and life-history implications of foraging and other behaviors.MethodsWe deployed accelerometers and magnetometers on four species of free-ranging albatrosses and evaluated the ability of unsupervised hidden Markov models (HMMs) to identify three major modalities in their behavior: ‘flapping flight’, ‘soaring flight’, and ‘on-water’. The relative contribution of each sensor to classification accuracy was measured by comparing HMM-inferred states with expert classifications identified from stereotypic patterns observed in sensor data.ResultsHMMs provided a flexible and easily interpretable means of classifying behavior from sensor data. Model accuracy was high overall (92%), but varied across behavioral states (87.6, 93.1 and 91.7% for ‘flapping flight’, ‘soaring flight’ and ‘on-water’, respectively). Models built on accelerometer data alone were as accurate as those that also included magnetometer data; however, the latter were useful for investigating slow and periodic behaviors such as dynamic soaring at a fine scale.ConclusionsThe use of IMUs in behavioral studies produces large data sets, necessitating the development of computationally-efficient methods to automate behavioral classification in order to synthesize and interpret underlying patterns. HMMs provide an accessible and robust framework for analyzing complex IMU datasets and comparing behavioral variation among taxa across habitats, time and space.


Animals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1549
Author(s):  
Robert D. Chambers ◽  
Nathanael C. Yoder ◽  
Aletha B. Carson ◽  
Christian Junge ◽  
David E. Allen ◽  
...  

Collar-mounted canine activity monitors can use accelerometer data to estimate dog activity levels, step counts, and distance traveled. With recent advances in machine learning and embedded computing, much more nuanced and accurate behavior classification has become possible, giving these affordable consumer devices the potential to improve the efficiency and effectiveness of pet healthcare. Here, we describe a novel deep learning algorithm that classifies dog behavior at sub-second resolution using commercial pet activity monitors. We built machine learning training databases from more than 5000 videos of more than 2500 dogs and ran the algorithms in production on more than 11 million days of device data. We then surveyed project participants representing 10,550 dogs, which provided 163,110 event responses to validate real-world detection of eating and drinking behavior. The resultant algorithm displayed a sensitivity and specificity for detecting drinking behavior (0.949 and 0.999, respectively) and eating behavior (0.988, 0.983). We also demonstrated detection of licking (0.772, 0.990), petting (0.305, 0.991), rubbing (0.729, 0.996), scratching (0.870, 0.997), and sniffing (0.610, 0.968). We show that the devices’ position on the collar had no measurable impact on performance. In production, users reported a true positive rate of 95.3% for eating (among 1514 users), and of 94.9% for drinking (among 1491 users). The study demonstrates the accurate detection of important health-related canine behaviors using a collar-mounted accelerometer. We trained and validated our algorithms on a large and realistic training dataset, and we assessed and confirmed accuracy in production via user validation.


Sign in / Sign up

Export Citation Format

Share Document