Genetic Diversity, Genetic Erosion, Conservation of Genetic Resources, and Cultivation of Medicinal Plants

Author(s):  
B. R. Rajeswara Rao
2016 ◽  
Vol 1 (3) ◽  
pp. 115
Author(s):  
Shadia A. Salih ◽  
Labuschange T. Labuschange ◽  
Abdalla H. Mohammed

The study of genetic diversity in crops has a strong impact on plant breeding and maintenance of genetic resources. Comprehensive knowledge of the genetic biodiversity of cultivated and wild sorghum germplasm is an important prerequisite for sustainability of sorghum production. Recurrent droughts resulting from climate change scenarios’ in many East and Central Africa countries, where sorghum is a significant arable crop, can potentially lead to genetic erosion and loss of valuable genetic resources. This study aimed at assessing the extent and pattern of genetic diversity and population genetic structure among sorghum accessions from selected countries in East and Central Africa (Sudan, Kenya, Uganda, Ethiopia, Eritrea, Rwanda and Burundi) using39 microsatellites markers. The studied loci were polymorphic and revealed a total of 941 alleles in 1108 sorghum genotypes. High levels of diversity were revealed with Sudan (68.5) having the highest level of genetic diversity followed by Ethiopia (65.3), whereas Burundi (0.45) and Rwanda (0.33) had the lowest level of genetic diversity. Analysis of molecular variance indicated, all variance components to be highly significant (p<0.001). The bulk of the variation was partitioned within countries (68.1%) compared to among countries (31.9%). Genetic differentiation between countries based on FST values was high and highly significant (FST=0.32). Neighbour-joining (NJ) analysis formed two distinct clusters according to geographic regions, namely the central region (Kenya, Burundi, Uganda and Rwanda) and the eastern region (Sudan, Ethiopia, and Eritrea). Population structure analysis revealed six distinct populations corresponding to NJ analysis and geographical origin of accessions. Countries clustered independently with small integration, which indicated the role of farmers’ practices in the maintenance of landrace identity and genetic diversity. The observed high level of genetic diversity indicated that germplasm from East Africa should be preserved from genetic erosion, especially in countries with the highest diversity.


2004 ◽  
Vol 30 ◽  
pp. 151-169
Author(s):  
M.W. Bruford

AbstractAnalysis of molecular genetic diversity in livestock potentially allows for rational management of genetic resources experiencing the serious pressures now facing the livestock sector. The potentially damaging effects of genetic erosion are an ongoing threat, both through loss of breeding stock during the 2001 FMD crisis and potentially as a result of the ongoing National Scrapie Plan. These factors and an increasing focus through the Food and Agriculture Organisation of the United Nations (FAO) on the conservation of animal genetic resources force us to consider seriously how to measure, monitor and conserve diversity throughout the genomes of livestock. Currently debated ways to optimally conserve livestock diversity, particularly the ‘Weitzman Approach’, may fail to take into account the significance of within-breed genetic diversity and its structuring, and apply relatively simplistic models to predict the probability of extinction for breeds over defined periods of time under certain management scenarios. In this paper I argue, using examples from our work and that of others, that within-breed diversity, in particular, should not be ignored when conserving livestock diversity, since breeds may be genetically structured at a variety of scales and there is little evidence for a convincing relationship between effective population size and genetic diversity within rare UK breeds. Furthermore, until we understand the population genetic forces that shape diversity in breeds in more detail, using raw indices of genetic variation or distances to rank or prioritise breeds in terms of some notional threat of extinction has questionable conservation value.


Author(s):  
Cristian ALBU ◽  
Aurel MAXIM ◽  
Raluca Maria PÂRLICI

Among the main problems encountered with crop plants, the most important one is represented by genetic erosion. At world level this issue has been debated within the Convention on Biodiversity adopted in UN Conference of Rio de Janeiro and The International Convention regarding Genetic Resources of Plants for Alimentation and Agriculture. In Europe, the regulations in this field are made by the European Directive 98/95 EEC. Across time tomatoes have suffered a heightened process of genetic diversity, phenomenon caused by industrialized farming which is based on the use of very uniform varieties with high productivity. The extension of green agriculture, has led to the use of landraces, because they respond best to the traditional farming systems. In Western Europe organizations of peasants had been founded and, they are involved in different activities aiming at conservation of traditional forms of agriculture and the use of old varieties. In Romania the institutions with continuous preoccupations in the field of vegetal genetic conservation, especially landraces, are the Gene Bank from Suceava and UASMV Cluj-Napoca. By using conservation methods (in situ and ex situ), the genetic erosion surely phenomenon of vegetal genetic resources, implicitly tomatoes, is reduced, the future generations will benefit from valuable genetic resources.


Diversity ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 14 ◽  
Author(s):  
Annelin Henriehetta Molotsi ◽  
Bekezela Dube ◽  
Schalk Willem Petrus Cloete

Indigenous sheep play an important role in the livelihoods of communal farmers in the Southern Africa Development Community (SADC), and this underlines the need to curb the genetic erosion of these valuable resources. This contribution reports that the phenotypic performance and genetics gains of institutional and commercial sheep in Southern Africa are well recorded. In contrast, there is a dearth of knowledge as far as the performance and genetic gains of indigenous ovine genetic resources utilized by smallholder farmers are concerned. High levels of genetic diversity have been observed in exotic breeds, whereas low levels of genetic diversity were found in the Zulu and Namaqua Afrikaner breeds. Phenotypic measurements for indigenous resources include linear measurements indicative of size and reproduction for Zulu sheep. Lamb survival, reproduction and resistance to ticks of the indigenous, fat-tailed Namaqua Afrikaner sheep, as well as growth and reproduction have also been recorded for Sabi and Landim sheep. This review discusses ways to sustainably utilize ovine genetic resources, which includes the suggested implementation of structured breeding and conservation programs, marketing, improving feed resources, health and diseases, as well as gender and age issues. Clearly, there is ample room for further research and development as far as the performance and improvement of African indigenous sheep are concerned.


Author(s):  
Pham Thi Hong Nhung ◽  
Do Hanh Nguyen ◽  
Bui Thi Yen ◽  
Do Thi Le Hang ◽  
Vu Thi Thom ◽  
...  

This study develops procedures for cloning ITS and matK genes on six specimens in order to exploit and conserve the genetic resources of H. nepalensis and evaluate its genetic diversity based on molecular markers. The study methods include DNA extraction from dried leaf samples, amplification of ITS and matK regions using PCR, sequencing and comparing with the sequences on Genbank. The study results include a successfully-established process of cloning ITS and matK genes; successful amplification and sequencing of the ITS and matK regions. The results also show that four samples (N1-N4) were 100% homologous to H. nepalensis and H1and H2 samples were 100% homologous to H. helix. The results provide data and tools for further studies of exploitation and development of the H. nepalensis K. Koch genetic resources in Vietnam. Keywords ITS, matK, Hedera nepalensis K. Koch, PCR References [1] V.V. Chi. Dictionary of Vietnamese Medicinal Plants, Publ. House Medicine, Ho Chi Minh City, 2012 (in Vietnamese).[2] D.H. Bich, D.Q. Cuong, B.X. Chuong, N. Thuong, D. T. Dam. The medicinal plants and animals in Vietnam, Hanoi Sci. Technol. Publ. House Hanoi, 2006 (in Vietnamese).[3] A. Sadat, M. Alam, A. Rauf, W. Ullah, Biological screening of ethyl acetate extract of Hedera nepalensis stem, Afr J Pharm Pharmacol, 6 (2012) 2934-2937. https://doi.org/10.5897/AJPP12.828.[4] T. Li, H. Pan, Y. Feng, H. Li, Y. Zhao, Bioactivity-guided isolation of anticancer constituents from Hedera nepalensis K. Koch, S Afr J Bot, 100 (2015) 87-93. https://doi.org/10.1016/j.sajb.2015.05.011.[5] L. Jafri, S. Saleem, N. Ullah, B. Mirza, In vitro assessment of antioxidant potential and determination of polyphenolic compounds of Hedera nepalensis K. Koch, Arab J Chem, 10 (2017) 3699-3706. https://doi.org/10.1016/j.arabjc.2014.05.002. [6] S. Saleem, L. Jafri, I. ul Haq, L.C. Chang, D. Calderwood, B.D. Green, B. Mirza, Plants Fagonia cretica L. and Hedera nepalensis K. Koch contain natural compounds with potent dipeptidyl peptidase-4 (DPP-4) inhibitory activity, J Ethnopharmacol, 156 (2014) 26-32. https://doi.org/10.1016/j.jep.2014.08.017.[7] W.J. Hashmi, H. Ismail, F. Mehmood, B. Mirza, Neuroprotective, antidiabetic and antioxidant effect of Hedera nepalensis and lupeol against STZ+ AlCl 3 induced rats model, DARU, 26 (2018) 179-190. https://doi.org/10.1007/s40199-018-0223-3.[8] H. Ismail, A. Rasheed, I.-u. Haq, L. Jafri, N. Ullah, E. Dilshad, M. Sajid, B. Mirza, Five indigenous plants of Pakistan with Antinociceptive, anti-inflammatory, antidepressant, and anticoagulant properties in Sprague Dawley rats, Evid Based Complement Alternat Med, 2017 (2017). https://doi.org/10.1155/2017/7849501[9] N.D. Thanh. DNA marker techniques in study and selection of plant. Journal of Biology. 36 (2014) 265-294 (in Vietnamese). https://doi.org/10.15625/0866-7160/v36n3.5974.[10] P.Z. Goldstein, R. DeSalle, Review and interpretation of trends in DNA barcoding, Front Ecol Evol, 7 (2019) 302. https://doi.org/10.3389/fevo.2019.00302.[11] S. Abugalieva, L. Volkova, Y. Genievskaya, A. Ivaschenko, Y. Kotukhov, G. Sakauova, Y. Turuspekov, Taxonomic assessment of Allium species from Kazakhstan based on ITS and matK markers, BMC plant biol, 17 (2017) 258. https://doi.org/10.1186/s12870-017-1194-0.[12] R.M. Bhagwat, B.B. Dholakia, N.Y. Kadoo, M. Balasundaran, V.S. Gupta, Two new potential barcodes to discriminate Dalbergia species, PloS one, 10 (2015) e0142965. https://doi.org/10.1371/journal.pone.0142965[13] D. Grivet, R. Petit, Phylogeography of the common ivy (Hedera sp.) in Europe: genetic differentiation through space and time, Mol Ecol, 11 (2002) 1351-1362. https://doi.org/10.1046/j.1365294x.2002.01522.x.[14] R. Li, J. Wen, Phylogeny and biogeography of Dendropanax (Araliaceae), an amphi-Pacific disjunct genus between tropical/subtropical Asia and the Neotropics, Syst Bot, 38 (2013) 536-551. https://doi.org/10.1600/036364413X666606.[15] Y. Sun, D. Skinner, G. Liang, S. Hulbert, Phylogenetic analysis of Sorghum and related taxa using internal transcribed spacers of nuclear ribosomal DNA, ‎Theor Appl Genet, 89 (1994) 26-32. https://doi.org/10.1007/BF00226978[16] P. Cuénoud, V. Savolainen, L.W. Chatrou, M. Powell, R.J. Grayer, M.W. Chase, Molecular phylogenetics of Caryophyllales based on nuclear 18S rDNA and plastid rbcL, atpB, and matK DNA sequences, Am J Bot, 89 (2002) 132-144. https://doi.org/10.3732/ajb.89.1.132.[17] D. Bošeľová, J. Žiarovská, L. Hlavačková, K. Ražná, M. Bežo, Comparative analysis of different methods of Hedera helix DNA extraction and molecular evidence of the functionality in PCR Acta fytotechn zootechn, 19 (2016) 144-149. https://doi.org/10.15414/afz.2016.19.04.144-149.[18] D.D. Long, Comparative analysis of different DNA extraction methods and preliminary analysis of genetic diversity of Hedera nepalensis K. Koch. in Vietnam based on GBSSI marker, VNU Journal of Science: Medical and Pharmaceutical Sciences, 35 (2019) 88-95 (in Vietnamese). https://doi.org/10.25073/2588-1132/vnumps.4165 [19] J.H. Cota-Sánchez, K. Remarchuk, K. Ubayasena, Ready-to-use DNA extracted with a CTAB method adapted for herbarium specimens and mucilaginous plant tissue, Plant Mol Biol Rep, 24 (2006)161. https://doi.org/10.1007/BF02914055.[20] S. Xu, D. Li, J. Li, X. Xiang, W. Jin, W. Huang, X. Jin, L. Huang, Evaluation of the DNA barcodes in Dendrobium (Orchidaceae) from mainland Asia, PloS one, 10 (2015) e0115168. https://doi.org/10.1371/journal.pone.0115168.[21] P. Vargas, H.A. McAllister, C. Morton, S.L. Jury, M.J. Wilkinson, Polyploid speciation in Hedera (Araliaceae): Phylogenetic and biogeographic insights based on chromosome counts and ITS sequences, Pl Syst Evol, 219 (1999) 165-179. https://doi.org/10.1007/BF00985577[22] X. Lei, Y.W. Wang, S.Y. Guan, L.J. Xie, L. Xin, C.Y. Sun, Prospects and problems for identification of poisonous plants in China using DNA barcodes, Biomed Environ Sci, 27 (2014) 794-806. https://doi.org/10.3967/bes2014.115.[23] H. Sun, W. McLewin, M.F. Fay, Molecular phylogeny of Helleborus (Ranunculaceae), with an emphasis on the East Asian‐Mediterranean disjunction, Taxon, 50 (2001) 1001-1018. https://doi.org/10.2307/1224717.    


Sign in / Sign up

Export Citation Format

Share Document