Principled Flipped Learning Paradigm for Laboratory Courses in Software Engineering

Author(s):  
Tonghua Su ◽  
Shengchun Deng ◽  
Xiaofei Xu ◽  
Dong Li ◽  
Zhiying Tu
2021 ◽  
Vol 13 (17) ◽  
pp. 9849
Author(s):  
Yen-Ting Lin

Software engineering education plays an important role in keeping students educated with software technologies, processes, and practices that are needed by industries. Nevertheless, the nature of software engineering learning activities in traditional classrooms is limited in scope and time, making it more difficult to achieve a proper balance between theory and practice and address industrial demands. This makes scant provision for assisting students in keeping their software engineering knowledge current. To support software engineering education, flipped learning is a suitable strategy. Prior studies have shown that students’ perceptions in flipped learning environments are better than those in traditional learning environments. Nevertheless, in flipped learning, students may not have sufficient ability to conduct learning out of class. Therefore, the flipped learning strategy should aim to meet the needs of students to ensure that they get the appropriate support or feedback during the learning process before the class. The aim of this study was to propose a flipped learning diagnosis approach to promote students’ learning out of class in the flipped classroom. To explore students’ learning performance in software engineering courses, three classes of students were invited to learn with three different learning approaches (traditional learning approach, flipped learning approach, and flipped learning diagnosis approach). The results showed that the students who learned with the flipped learning diagnosis approach outperformed those students who learned with the flipped learning approach or the traditional learning approach.


2021 ◽  
Vol 13 (18) ◽  
pp. 10163
Author(s):  
Hana Dler Ahmed ◽  
Gulsum Asiksoy

Laboratory courses are extremely important in Physics education in terms of providing a better understanding of the theoretical course subjects by the students. However, since the COVID-19 epidemic caused education to be carried out remotely and digitally all over the world, practical as well as theoretical courses were moved to digital platforms. Therefore, this study investigated the effects of the Gamified Flipped Learning (GFL) method on students’ physics self-efficacy and innovation skills in a virtual physics laboratory course. The study was carried out with true experimental design and the participants were a total of 70 first-year engineering students, which were randomly divided into two groups. The experimental group was trained with the GFL method, the control group was trained with Classical Flipped Learning (CFL) method. Data were collected from a physics self-efficacy questionnaire, innovative skills questionnaire, and semi-structured interviews form. The research results showed that GFL method has a positive impact on the innovation skills of students although insignificant improvement was introduced by gamified-flipped learning on students’ self-efficacy. In addition, the interviews with the students revealed a positive perception of gamification, by mentioning some important aspects of the process that were extremely beneficial.


2021 ◽  
Vol 1 (5) ◽  
Author(s):  
Ahmed M. Elkhatat ◽  
Shaheen A. Al-Muhtaseb

AbstractSince the early spring of 2020, the coronavirus pandemic (COVID-19) outbreak has hindered traditional face-to-face teaching and hands-on, traditional delivery of laboratory courses, forcing universities to migrate from the traditional way of teaching to a remote online approach. Although few studies addressed the pandemic's impact on educational outcomes, no studies are found to investigate the impact of the remote online teaching approach on laboratory courses. This paper highlights the impact of the online teaching approach, coupled with flipped learning pedagogy, as a substitute for traditional laboratories. The course learning outcomes and assessment tools are analyzed and discussed for 46 students enrolled in the Unit Operations Laboratory course in the chemical engineering program at Qatar University. Results show that the course learning outcomes are achieved effectively using the hybrid online-flipped learning pedagogy, which can be considered for computerized traditional laboratories as a moderation solution to alleviate pandemic COVID-19 confinement on learning outcome. This methodology can also be sustained in the future to facilitate the teaching of such lab courses, even in normal conditions, to optimize the resources and avail the delivery of such courses to a larger audience who may have various obstacles to attending traditional lab courses.


2020 ◽  
Vol 43 ◽  
Author(s):  
Valerie F. Reyna ◽  
David A. Broniatowski

Abstract Gilead et al. offer a thoughtful and much-needed treatment of abstraction. However, it fails to build on an extensive literature on abstraction, representational diversity, neurocognition, and psychopathology that provides important constraints and alternative evidence-based conceptions. We draw on conceptions in software engineering, socio-technical systems engineering, and a neurocognitive theory with abstract representations of gist at its core, fuzzy-trace theory.


Author(s):  
Hadar Ram ◽  
Dieter Struyf ◽  
Bram Vervliet ◽  
Gal Menahem ◽  
Nira Liberman

Abstract. People apply what they learn from experience not only to the experienced stimuli, but also to novel stimuli. But what determines how widely people generalize what they have learned? Using a predictive learning paradigm, we examined the hypothesis that a low (vs. high) probability of an outcome following a predicting stimulus would widen generalization. In three experiments, participants learned which stimulus predicted an outcome (S+) and which stimulus did not (S−) and then indicated how much they expected the outcome after each of eight novel stimuli ranging in perceptual similarity to S+ and S−. The stimuli were rings of different sizes and the outcome was a picture of a lightning bolt. As hypothesized, a lower probability of the outcome widened generalization. That is, novel stimuli that were similar to S+ (but not to S−) produced expectations for the outcome that were as high as those associated with S+.


Sign in / Sign up

Export Citation Format

Share Document