Effective Visualizations of Energy Consumption in a Feedback System – A Conjoint Measurement Study

Author(s):  
Tobias Weiss ◽  
Madlen Diesing ◽  
Marco Krause ◽  
Kai Heinrich ◽  
Andreas Hilbert
2011 ◽  
Vol 291-294 ◽  
pp. 1685-1688
Author(s):  
Xi Nan Dang ◽  
Qiao Fu Chen ◽  
Li Jun Yang

According to the vacuum bursting process for fresh chestnut shell and requirements for relevant vacuum system, a vacuum system of steam jet pump was designed with a start-up jet pump attached to it. Of which the waste gas from ejector was used for reheating in the bursting process to lead the vacuum bursting unit to run more reliably and stably with efficiency improved and energy consumption reduced. The rate of bursting came up to 95% in the process test.


Author(s):  
Hadi Abbas ◽  
Youngki Kim ◽  
Jason B. Siegel ◽  
Denise M. Rizzo

This paper presents a study of energy-efficient operation of vehicles with electrified powertrains leveraging route information, such as road grades, to adjust the speed trajectory. First, Pontryagin’s Maximum Principle (PMP) is applied to derive necessary conditions and to determine the possible operating modes. The analysis shows that only 5 modes are required to achieve minimum energy consumption; full propulsion, cruising, coasting, full regeneration, and full regeneration with conventional braking. The minimum energy consumption problem is reformulated and solved in the distance domain using Dynamic Programming to optimize speed profiles. A case study is shown for a light weight military robot including road grades. For this system, a tradeoff between energy consumption and trip time was found. The optimal cycle uses 20% less energy for the same trip duration, or could reduce the travel time by 14% with the same energy consumption compared to the baseline operation.


High rise office building design is one of the essential buildings in construction industry due to the limited space especially in the urban area. After home, a high rise office building is an important space for human in modern era. Due to the issue of high energy consumption especially inefficient artificial light strategy, side-day lighting becomes the best solution for a high rise office building design. Despite providing efficient energy consumption, side-day lighting creates a positive impact to the worker as well as the office's indoor environment. Hence, this paper aims to explore the basic passive side-day lighting considerations that educate people especially for those who are involved in the building construction industry. Beside, this paper focuses on the passive design considerations due to the various advantages that not involved especially with complex electrical and mechanical system. A systematic literature review is the main methodology for this paper to identify the basic passive side-day lighting considerations for a high rise office building design. Base on this research, it revealed that eight elements for building design considerations should be applied to provide a better day lighting impact for a high rise office building design. Considerations for non-building design aspects should also need to be applied since those aspects contribute to produce a better day lighting impact for a high rise office building design.


The world has increased its demand for assistive technology (AT). There are a lot of researches and developments going on with respect to AT. Among the AT devices which are being developed, the need for a reliable and less expensive device which serves as an assistance for a visually challenged person is in serious demand all around the world. We, therefore, intend to provide a solution for this by constructing a device that has the capability to detect the obstacles within a given range for a visually challenged person and alerting the person about the obstacles. This involves various components like a camera for image detection, an ultrasonic distance sensor for distance estimation and a vibration motor which works on the principle of Haptic feedback and rotates with varied intensities depending on how far the obstacle is from the user. This paper presents a model which is a part of the footwear of the user and hence, no additional device is required to hold onto for assistance. The model involves the use of a microcontroller, a camera, to dynamically perceive the obstacles and a haptic feedback system to alert the person about the same. The camera dynamically acquires the real time video footage which is further processed by the microcontroller to detect the obstacles. Simultaneously, one more algorithm is being executed to estimate the distance with the help of an ultrasonic distance sensor. Depending on the distance, the frequency of the vibration motor, which acts as the output for notifying the user about the obstacle, is varied (haptic feedback). With this system, a visually challenged person will be able to avoid the obstacles successfully without the use of any additional device.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Cheng He ◽  
Jian Wu ◽  
Jin Ying ◽  
Jiyang Dai ◽  
Zhe Zhang ◽  
...  

In order to solve the problem of unknown parameter drift in the nonlinear pure-feedback system, a novel nonlinear pure-feedback system is proposed in which an unconventional coordinate transformation is introduced and a novel unconventional dynamic surface algorithm is designed to eliminate the problem of “calculation expansion” caused by the use of backstepping in the pure-feedback system. Meanwhile, a sufficiently smooth projection algorithm is introduced to suppress the parameter drift in the nonlinear pure-feedback system. Simulation experiments demonstrate that the designed controller ensures the global and ultimate boundedness of all signals in the closed-loop system and the appropriate designed parameters can make the tracking error arbitrarily small.


2012 ◽  
Vol 6 (1) ◽  
Author(s):  
Jan Walter Schroeder ◽  
Venketesh N Dubey ◽  
Tamas Hickish ◽  
Jonathan Cole

2019 ◽  
Vol 67 (4) ◽  
pp. 477-483
Author(s):  
Mauricio Barramuño ◽  
Pablo Valdés-Badilla ◽  
Exequiel Guevara

Introduction: Human motor control requires a learning process and it can be trained by means of various sensory feedback sources.Objective: To determine variations in glenohumeral movement control by learning in young adults exposed to an auditory feedback system while they perform object translation tasks classified by difficulty level.Materials and methods: The study involved 45 volunteers of both sexes (22 women), aged between 18 and 32 years. Glenohumeral movement control was measured by means of the root mean square (RMS) of the accelerometry signal, while task execution speed (TES) was measured using an accelerometer during the execution of the task according to its difficulty (easy, moderate and hard) in four stages of randomized intervention (control, pre-exposure, exposure-with auditory feedback, and post-exposure).Results: Statistically significant differences (p<0.001) were found between the pre-exposure and exposure stages and between pre-exposure and post-exposure stages. A significant increase (p <0.001) in TES was identified between the pre-exposure and exposure stages for tasks classified as easy and hard, respectively.Conclusion: The use of an auditory feedback system in young adults without pathologies enhanced learning and glenohumeral movement control without reducing TES. This effect was maintained after the feedback, so the use of this type of feedback system in healthy individuals could result in a useful strategy for the training of motor control of the shoulder.


2018 ◽  
Vol 215 (2) ◽  
pp. 293-297
Author(s):  
Patrick E. Georgoff ◽  
Gabrielle Shaughness ◽  
Lisa Leininger ◽  
Vahagn C. Nikolian ◽  
Gurjit Sandhu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document