Oxidative Stress, Metabolic Syndrome and Alzheimer’s Disease

2016 ◽  
pp. 361-374 ◽  
Author(s):  
Danira Toral-Rios ◽  
Karla Carvajal ◽  
Bryan Phillips-Farfán ◽  
Luz del Carmen Camacho-Castillo ◽  
Victoria Campos-Peña
Synapse ◽  
2017 ◽  
Vol 71 (10) ◽  
pp. e21990 ◽  
Author(s):  
Eduardo Rojas-Gutierrez ◽  
Guadalupe Muñoz-Arenas ◽  
Samuel Treviño ◽  
Blanca Espinosa ◽  
Raúl Chavez ◽  
...  

2021 ◽  
Author(s):  
Gláucia Maria Senhorinha ◽  
Arlys Emanuel Mendes da Silva Santos ◽  
Douglas Daniel Dophine

Background: Metabolic syndrome (MS) leads to the deposits formation of insoluble protein aggregates, neuroinflammation, oxidative stress, neuronal insulin resistance, progressive insulin resistance, desensitization and β-amyloid amyloidosis in the brain, besides direct ischemic effects which are closely associated with Alzheimer’s disease (AD).1 Objectives: The present study seeks to understand the role of the metabolic syndrome in the pathophysiology of Alzheimer’s disease and to describe preventive and therapeutic interventions. Methods: PUBMED and Web of Science were the databases used, the following descriptors were used to search the articles: “Alzheimer Disease” OR “Alzheimer Dementia” AND “Metabolic Syndrome”. Results: The studies in general have shown that MS is related to AD through brain insulin resistance, triggered by oxidative stress and neuroinflammation. It is related to the progressive atrophy of brain regions involved in the progression of AD. Insulin resistance in the brain is related to the progressive atrophy of the brain regions from initial progression of AD. These regions are cingulate cortices, medial temporal lobe, prefrontal gyri and other regions.³ Thus, there is an inhibition of the mechanisms of beta-amyloid removal, leading to its accumulation, which generates neuroinflammation, that in turn potentiates insulin resistance in the central nervous system, contributing to the genesis and progression of cognitive damage.2,3 Conclusions: Insulin resistance plays a major role in the initiation and perpetuation of cognitive impairment in AD. Furthermore, the components of the MS associated with AD, when treated with preventive and therapeutic measures, break this association by promoting rebalancing of the metabolism.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Diana Luque-Contreras ◽  
Karla Carvajal ◽  
Danira Toral-Rios ◽  
Diana Franco-Bocanegra ◽  
Victoria Campos-Peña

Alzheimer’s disease (AD) is a major neurodegenerative disease affecting the elderly. Clinically, it is characterized by a progressive loss of memory and cognitive function. Neuropathologically, it is characterized by the presence of extracellularβ-amyloid (Aβ) deposited as neuritic plaques (NP) and neurofibrillary tangles (NFT) made of abnormal and hyperphosphorylated tau protein. These lesions are capable of generating the neuronal damage that leads to cell death and cognitive failure through the generation of reactive oxygen species (ROS). Evidence indicates the critical role of Aβmetabolism in prompting the oxidative stress observed in AD patients. However, it has also been proposed that oxidative damage precedes the onset of clinical and pathological AD symptoms, including amyloid-βdeposition, neurofibrillary tangle formation, vascular malfunction, metabolic syndrome, and cognitive decline. This paper provides a brief description of the three main proteins associated with the development of the disease (Aβ, tau, and ApoE) and describes their role in the generation of oxidative stress. Finally, we describe the mitochondrial alterations that are generated by Aβand examine the relationship of vascular damage which is a potential prognostic tool of metabolic syndrome. In addition, new therapeutic approaches targeting ROS sources and metabolic support were reported.


2013 ◽  
Vol 20 (37) ◽  
pp. 4648-4664 ◽  
Author(s):  
S. Chakrabarti ◽  
M. Sinha ◽  
I. Thakurta ◽  
P. Banerjee ◽  
M. Chattopadhyay

2018 ◽  
Vol 15 (4) ◽  
pp. 345-354 ◽  
Author(s):  
Barbara D'Orio ◽  
Anna Fracassi ◽  
Maria Paola Cerù ◽  
Sandra Moreno

Background: The molecular mechanisms underlying Alzheimer's disease (AD) are yet to be fully elucidated. The so-called “amyloid cascade hypothesis” has long been the prevailing paradigm for causation of disease, and is today being revisited in relation to other pathogenic pathways, such as oxidative stress, neuroinflammation and energy dysmetabolism. The peroxisome proliferator-activated receptors (PPARs) are expressed in the central nervous system (CNS) and regulate many physiological processes, such as energy metabolism, neurotransmission, redox homeostasis, autophagy and cell cycle. Among the three isotypes (α, β/δ, γ), PPARγ role is the most extensively studied, while information on α and β/δ are still scanty. However, recent in vitro and in vivo evidence point to PPARα as a promising therapeutic target in AD. Conclusion: This review provides an update on this topic, focussing on the effects of natural or synthetic agonists in modulating pathogenetic mechanisms at AD onset and during its progression. Ligandactivated PPARα inihibits amyloidogenic pathway, Tau hyperphosphorylation and neuroinflammation. Concomitantly, the receptor elicits an enzymatic antioxidant response to oxidative stress, ameliorates glucose and lipid dysmetabolism, and stimulates autophagy.


Sign in / Sign up

Export Citation Format

Share Document