Multibody Model of Under-Actuated Tendon Driven Finger to Study the Antagonist Tendon

Author(s):  
Sergio Savino
Keyword(s):  
Author(s):  
Massimiliano Gobbi ◽  
Gianpiero Mastinu ◽  
Giorgio Previati ◽  
Ermes Tarallo

This work is focused on the evaluation of the dynamic performance of different neck protection devices. In order to evaluate the mechanical response of the safety devices, a multibody model of the human neck has been developed in Matlab™ SimMechanics™. The mechanical behavior of the neck is described in the paper and different injury indices are presented and compared. The information about anatomy and physiology of the cervical spine of the neck has been collected from the literature, with particular focus on the mechanism of damage of vertebrae, disks and soft tissues. The multibody model has been validated against experimental data available in the literature concerning impulsive loads representative of crash phenomena. By means of the presented model, some relevant injury indices are computed for an accident involving a motorcyclist. Since the focus has been set on mild injuries of the neck, the simulated crash should cause a high probability of injuries of the neck together with a low probability of damages of the head while wearing a standard helmet. The performance of neck safety devices that link the helmet with the thoracic-shield are evaluated and compared. For sake of clearness, three types of neck safety devices are considered referencing to US patents: an airbag jacket, a 3D cushion wrapping the motorcyclist’s neck, and a “spring and dampers” system. The airbag jacket has been modeled as a high stiffness and low deformation system by considering the airbag in its fully deployed configuration and by neglecting its dynamic performance during inflation phase. The other safety devices have been modeled as lumped parameters spring-damper systems. A sensitivity analysis on the injury indexes has been performed by changing the stiffness and the damping parameters of these safety systems. The injury indexes collected by simulating the different neck safety systems have been compared.


Author(s):  
David Moreno Giner ◽  
Claudio Brenna ◽  
Ioannis Symeonidis ◽  
Gueven Kavadarlic

Multibody dynamics simulation technology can provide a great help to understand and analyze motorcycle dynamics. In fact, its application in this field has grown very fast in the last years. However, apart from the mathematical model of the vehicle, a virtual rider is essential in order to properly simulate a motorcycle. This is due to the unstable nature of two-wheeled vehicles, which makes them very difficult to simulate by using open-loop maneuvers. The problem of developing a virtual rider for motorcycles has already been covered in literature but most of the proposed control algorithms achieved their purpose without considering the physiological limits of the rider. The objective of the research activities presented here are the preliminary development of a realistic virtual rider based on an experimental campaign and its subsequent simulation together with a detailed multibody model of a motorcycle. Special emphasis was put on making the rider model as simple as possible to facilitate the posterior design of the controller. Real rider movements were measured under laboratory conditions by means of the Motion Analysis technique. Several volunteers with different riding experiences, gender and anthropometry were involved in the experiments in order to provide a valid dataset for the analysis. For the present research, the virtual rider controls the direction of the motorcycle by means of both a torque on the handlebars and the movement of his body. The upper part of the rider’s body was modeled as an inverted pendulum. With regard to the longitudinal dynamics, the motorcycle is controlled by means of the brake torques and by the engine torque, which is transmitted to the rear wheel by means of a simplified model of the chain. First results of the developed virtual rider are presented at the end of this paper.


2013 ◽  
Vol 135 (3) ◽  
Author(s):  
Peter Fietkau ◽  
Bernd Bertsche

This paper describes an efficient transient elastohydrodynamic simulation method for gear contacts. The model uses oil films and elastic deformations directly in the multibody simulation, and is based on the Reynolds equation including squeeze and wedge terms as well as an elastic half-space. Two transient solutions to this problem, an analytical and a numerical one, were developed. The analytical solution is accomplished using assumptions for the gap shape and the pressure in the middle of the gap. The numerical problem is solved using multilevel multi-integration algorithms. With this approach, tooth impacts during gear rattling as well as highly loaded power-transmitting gear contacts can be investigated and lubrication conditions like gap heights or type of friction may be determined. The method was implemented in the multibody simulation environment SIMPACK. Therefore it is easy to transfer the developed element to other models and use it for a multitude of different engineering problems. A detailed three-dimensional elastic multibody model of an experimental transmission is used to validate the developed method. Important values of the gear contact like normal and tangential forces, proportion of dry friction, and minimum gap heights are calculated and studied for different conditions. In addition, pressure distributions on tooth flanks as well as gap forms are determined based on the numerical solution method. Finally, the simulation approach is validated with measurements and shows good consistency. The simulation model is therefore capable of predicting transient gear contact under different operating conditions such as load vibrations or gear rattling. Simulations of complete transmissions are possible and therefore a direct determination of transmission vibration behavior and structure-borne noise as well as of forces and lubrication conditions can be done.


Author(s):  
S. S. N. Ahmad ◽  
C. Cole ◽  
M. Spiryagin ◽  
Y. Q. Sun

Implementation of a new bogie concept is an integrated part of the vehicle design which must follow a rigorous testing and validation procedure. Use of multibody simulation helps to reduce the amount of time and effort required in selecting a new concept design by analysing results of simulated dynamic behaviour of the proposed design. However, the multibody simulation software mainly looks at the dynamics of a single vehicle; hence, forces from the train configuration operational dynamics are often absent in such simulations. Effects of longitudinal-lateral and longitudinal-vertical interactions between rail vehicles have been found to affect the stability of long trains [1,2]. The effect of wedge design on the vertical dynamics of a bogie has also been discussed in [3,4]. It is important to apply the lateral and vertical forces from a train simulation into a single multibody model of a wagon to check its behaviour when operating in train configuration. In this paper, a novel methodology for the investigation of new bogie designs has been proposed based on integrating dynamic train simulation and the multibody vehicle modelling concept that will help to efficiently achieve the most suitable design of the bogie. The proposed methodology suggests that simulation of any configuration of bogie needs to be carried out in three stages. As the first stage, the bogie designs along with the wagon configurations need to be presented as a multibody model in multibody simulation software to test the suitability of the concept. The model checking needs to be carried out in accordance with the wagon model acceptance procedure established in [5]. As the second stage, the wagon designs need to be tested in train configurations using a longitudinal train dynamics simulation software such as ‘CRE-LTS’ [2], where a train set consisting of the locomotives and wagons will be simulated to give operational wagon parameters such as lateral and vertical coupler force components. As the third stage, the detailed dynamic analysis of bogies and wagons needs to be performed with a multibody software such as ‘Gensys’ where lateral and vertical coupler force components from the train simulation (second stage) will be applied on the multibody model to replicate the worst case scenario. The proposed methodology enhances the selection procedure of any alternate bogie concept by the application of simulated train and vehicle dynamics. The simulated case studies show that simulation of wagon dynamic behaviour in multibody software combined with data obtained from longitudinal train simulation is not only possible, but it can identify issues with a bogie design that can otherwise be overlooked.


2018 ◽  
Vol 49 (2) ◽  
pp. 92-99 ◽  
Author(s):  
Stefano Melzi ◽  
Edoardo Sabbioni ◽  
Michele Vignati ◽  
Maurizio Cutini ◽  
Massimo Brambilla ◽  
...  

Fruit harvesting trucks are used to easy and speed-up the work of agricultural operators. These vehicles are provided with a moving cargo bed, which can be raised up to 3 meters from the ground so that workers are closer to the plants top. Due to factors like height of centre of gravity and operation on soft and irregular soil, these vehicles present several safety issues. This research, carried out inside a project funded by INAIL (Italian National Institute for Insurance against Accidents at Work), analysed the stability of fruit harvesting trucks with particular focus on rollover risk. Experimental tests were carried out to characterise the response of these vehicles. Multibody models of two trucks were then developed and used to determine the rollover angle along a generic direction considering the effect of vehicle configuration and of tire-soil stiffness.


2016 ◽  
Vol 06 (01) ◽  
pp. 10-19
Author(s):  
Martin Eckl ◽  
Thomas Lepper ◽  
Berend Denkena

Machines ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 26
Author(s):  
Alberto Martini ◽  
Giovanni Paolo Bonelli ◽  
Alessandro Rivola

This study investigates the dynamic behavior of a recently developed counterbalance forklift truck. The final objective is creating virtual testing tools based on numerical multibody models to evaluate the dynamic stresses experienced by the forklift family of interest during a reference operating cycle, defined by the manufacturer’s testing protocols. This work aims at defining sufficiently accurate and easy-to-implement modelling approaches and validation procedures. It focuses on a specific test, namely the passage of a speed-bump-like obstacle at high velocity, which represents one of the most severe conditions within the reference cycle. Indeed, unlike most of the other wheeled vehicles, forklifts typically do not have advanced suspension systems and their dynamic response is significantly affected by ground irregularities. To this end, a preliminary model of the complete forklift, featuring rigid bodies and a simplified tire–ground contact model, is implemented with a commercial software. Experimental tests are conducted on the forklift to measure the vehicle vibrations when running on the obstacle, for model validation purposes. After model updating, the results provided by the numerical simulations match the experimental data satisfactorily. Hence, the modelling and validation strategies are proven viable and effective.


Sign in / Sign up

Export Citation Format

Share Document