Latest Development and Application of Nb-Bearing High Strength Pipeline Steels

2014 ◽  
pp. 583-595
Author(s):  
Yongqing Zhang ◽  
Chengjia Shang ◽  
Aimin Guo ◽  
Lei Zheng ◽  
Tao Niu ◽  
...  
2009 ◽  
Vol 502 (1-2) ◽  
pp. 38-44 ◽  
Author(s):  
Wei Wang ◽  
Yiyin Shan ◽  
Ke Yang

Author(s):  
M. Elboujdaini ◽  
R. W. Revie ◽  
M. Attard

A comparison was made between four strength levels of pipeline steels (X-70, X80, X-100 and the X-120) from the point of view of their susceptibility to hydrogen embrittlement under cathodic protection. The main aim was to determine whether the development of higher strength materials led to greater susceptibility to hydrogen embrittlement. This was achieved by straining at 2×10−6 s−1 after cathodic charging in a simulated dilute groundwater solution (NS4) containing 5% CO2/95% N2 (pH approximately 6.7). The results showed quantitatively the loss of ductility after charging, and the loss of ductility increases with strength level of the steel. All four steels exhibited a loss of ductility at overprotected charging potential and an increasing amount of brittleness on the fracture surface. Ductility in solution was measured under four different levels of cathodic protection, ranging from no cathodic protection to 500 mV of overprotection with respect to the usually accepted criterion of −850 mV vs. Cu/CuSO4 reference electrode. Experiments were carried out by straining during cathodic polarization in a simulated dilute ground water solution (NS-4 solution). Strain rates used were 2×10−6 s−1. After failure, the fracture surfaces were characterized by examination using scanning electron microscopy (SEM). Under cathodic protection, all four steels showed loss of ductility and features of brittle fracture. The loss of ductility under cathodic polarization was larger the greater the strength of the steel and the more active (i.e., more negative) the applied potential. The Ductility Reduction Index (DRI) was defined to quantify the reduction in ductility.


Author(s):  
Frank Barbaro ◽  
Zhixiong Zhu ◽  
Lenka Kuzmikova ◽  
Huijun Li ◽  
Han Jian

2017 ◽  
Vol 896 ◽  
pp. 182-189 ◽  
Author(s):  
Ji Ming Zhang ◽  
Qiang Chi ◽  
Ling Kang Ji ◽  
Hui Feng ◽  
Yan Hua Li ◽  
...  

Fine microstructure of twinning Martensite/austenite (M/A) islands in a X100 high strength pipeline steel were analyzed by the scanning electron microscope (SEM) and high-resolution transmission electron microscope (HRTEM), and a uniaxial compressive experiment of micro-pillar for a twinning M/A island was conducted in present paper. The experimental results showed that M/A islands in X100 pipeline steels were consisted of retained austenite and nanoscale twins with sizes of less than ten nanometers. There were a few small blocks of nanoscale twins in an M/A island. Volume fraction of twinning M/A islands had an important effect on mechanical properties of X100 pipeline steels, with the increase of twinning M/A islands fraction, yield strength of X100 pipeline steel increased, and impact toughness of X100 pipeline steel decreased. The micro-pillar compression showed that the nanoscale twinning M/A island exhibited the higher deformation hardening during the compressive test, and its uniaxial compressive strength could up to 1.35GPa ultrahigh stress level.


Author(s):  
Xian-Kui Zhu ◽  
Brian N. Leis

Battelle two curve model (BTCM) was developed in the 1970s and successfully used for determining arrest toughness for ductile gas transmission pipelines in terms of Charpy vee-notched (CVN) impact energy. Practice has shown that the BTCM is accurate only for pipeline grades up to X65, but not for high strength pipeline grades X70 and above. Different methods to improve the BTCM were proposed over the years. This paper reviews the BTCM and its modified methods in terms of CVN energy or drop weight tear test (DWTT) energy for determining arrest toughness of ductile gas pipeline steels, particularly for high strength pipeline steels X80 and beyond. This includes the often-used Leis correction method, the CSM factor method, Wilkowski DWTT method and others. The CVN and DWTT energy-based methods are evaluated and discussed through the critical analysis and comparison with full-scale experimental data. The objective is to identify reasonable methods to be used for determining the minimum fracture toughness required to arrest a ductile running crack in a modern high strength, high pressure gas pipeline. The results show that available nonlinear models to correlate the standard DWTT and CVN energies are questionable, and the Leis correction method is a viable approach for determining arrest toughness for high strength pipeline steels, but further study is needed for ultra-high pipeline grades. Suggestions for further improving the BTCM are discussed.


2021 ◽  
Vol 349 ◽  
pp. 04002
Author(s):  
Christos Sofras ◽  
Marianthi Bouzouni ◽  
Nikolaos Voudouris ◽  
Spyros Papaefthymiou

The aim of this study is to investigate the formation of oxide defects known as penetrators during high frequency induction welding process of high strength low alloy pipeline steels and to correlate their formation with the steel chemical composition. Penetrators formed during the welding process can be detrimental for the impact properties of the weld seam. For this purpose, three different samples, with different chemical compositions, were intentionally produced with penetrator-type oxides and investigated. In order to characterize the oxide defect and correlate their formation with the chemical composition of the steel, optical microscopy and scanning electron microscopy paired with energy dispersive spectroscopy were employed. In addition, thermodynamic calculations were performed in order to examine whether the chemical composition of pipeline steels is prone to oxide formation. The results showed that oxides with pancake type morphology were found alongside the fusion zone of the samples. They mainly consisted of manganese and silicon. First findings on the the Mn/Si ratio showed that the lower ratio is less susceptible to oxide formation.


Author(s):  
Filip Van den Abeele

Abstract The ability to arrest a running crack is one of the key features in the safe design of pipeline systems. In the industry design codes, the crack arrest properties of a pipeline should meet two requirements: crack propagation has to occur in a ductile fashion, and enough energy should be dissipated during propagation. While the first criterion is assessed by the Battelle Drop Weight Tear Test (BDWTT) at low temperatures, the latter requirement is converted into a lower bound for the impact energy absorbed during a Charpy V-notch (CVN) impact test. However, the introduction of high strength pipelines steels (X70 and beyond) has revealed that the commonly used relations based on BDWTT and CVN no longer hold. For such scenarios, Continuum Damage Mechanics (CDM) models provide promising potential to obtain a more profound understanding of the mechanisms that govern ductile crack propagation in high strength pipeline steels. In recent years, different types of CDM models have been used to simulate ductile fracture of pipeline steels. This paper focuses on two of these models, i.e. the Gurson-Tvergaard-Needleman (GTN) model and the Modified Bai-Wierzbicki (MBW) model. The GTN model is based on the computation of void growth according to Rice and Tracey, and account for the local softening of the material due to void nucleation, growth and subsequent coalescence. The MBW model is a fully coupled damage model, where the yield surface depends on both the stress triaxiality and the Lode angle. Although both models can predict ductile fracture propagation, their widespread application in pipeline design is hampered by the large number of input parameters to be calibrated. The GTN model requires 10 input parameters, i.e. 3 Tvergaard damage parameters, 4 porosity parameters and 3 parameters to describe void nucleation. Whereas the Modified Mohr-Coulomb model originally proposed by Bai and Wierzbicki uses merely 2 parameters, the extended MBW model requires no less than 18 parameters to be calibrated: 11 plasticity parameters (5 stress + 3 strain rate + 3 temperature) and 7 damage parameters (4 initiation + 1 propagation + 2 failure). In this paper, different numerical/experimental strategies to calibrate these parameter sets are reviewed and compared. Sensitivity analyses are performed to assess the influence of the different input parameters on the model predictions. For both GTN and MBW models, the robustness and uniqueness of the calibrated parameter sets is investigated. Recommendations on optimum parameter values are derived, with special emphasis on high strength pipeline steels.


Sign in / Sign up

Export Citation Format

Share Document