Digital Processing of Frequency–Pulse Signal in Measurement System

Author(s):  
D. Świsulski ◽  
E. Pawłowski ◽  
M. Dorozhovets
Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 673
Author(s):  
Augustyn Wójcik ◽  
Piotr Bilski ◽  
Robert Łukaszewski ◽  
Krzysztof Dowalla ◽  
Ryszard Kowalik

The paper presents the novel HF-GEN method for determining the characteristics of Electrical Appliance (EA) operating in the end-user environment. The method includes a measurement system that uses a pulse signal generator to improve the quality of EA identification. Its structure and the principles of operation are presented. A method for determining the characteristics of the current signals’ transients using the cross-correlation is described. Its result is the appliance signature with a set of features characterizing its state of operation. The quality of the obtained signature is evaluated in the standard classification task with the aim of identifying the particular appliance’s state based on the analysis of features by three independent algorithms. Experimental results for 15 EAs categories show the usefulness of the proposed approach.


2013 ◽  
Vol 278-280 ◽  
pp. 680-683
Author(s):  
Zi Qin Ma ◽  
Ren Zhang ◽  
Da Li Kang ◽  
Wu Yang

With the deep analysis on the rotational speed measurement and the error existed in the measurement process at present, this paper introduces a high precision rotational speed measurement system based on infrared sensor and microcontroller. This system combines with improved measuring method. The sensor is an infrared photoelectric sensor, and uses its characteristics of the autocollimator ensured accuracy of measurement. The photoelectric sensor outputs weak voltage pulse signal when it receives the reflected infrared light. And then the signal is processed by double-reversed amplification and twice pulse shaping circuit. The system uses the relevant logic functions of a D-type flip-flop to control two 16-bit microcontroller chip timing/counter turned on and off simultaneously, and calculates the rotation speed. At last, the result is displayed on LED by Microcontroller. This measurement system has high accuracy, fast sampling speed and wide measuring range.


Sensors ◽  
2021 ◽  
Vol 21 (24) ◽  
pp. 8333
Author(s):  
Yang Bai ◽  
Xinliang Wang ◽  
Junru Shi ◽  
Fan Yang ◽  
Jun Ruan ◽  
...  

Second-order Zeeman frequency shift is one of the major systematic factors affecting the frequency uncertainty performance of cesium atomic fountain clock. Second-order Zeeman frequency shift is calculated by experimentally measuring the central frequency of the (1,1) or (−1,−1) magnetically sensitive Ramsey transition. The low-frequency transition method can be used to measure the magnetic field strength and to predict the central fringe of (1,1) or (−1,−1) magnetically sensitive Ramsey transition. In this paper, we deduce the formula for magnetic field measurement using the low-frequency transition method and measured the magnetic field distribution of 4 cm inside the Ramsey cavity and 32 cm along the flight region experimentally. The result shows that the magnetic field fluctuation is less than 1 nT. The influence of low-frequency pulse signal duration on the accuracy of magnetic field measurement is studied and the optimal low-frequency pulse signal duration is determined. The central fringe of (−1,−1) magnetically sensitive Ramsey transition can be predicted by using a numerical integrating of the magnetic field “map”. Comparing the predicted central fringe with that identified by Ramsey method, the frequency difference between these two is, at most, a fringe width of 0.3. We apply the experimentally measured central frequency of the (−1,−1) Ramsey transition to the Breit-Rabi formula, and the second-order Zeeman frequency shift is calculated as 131.03 × 10−15, with the uncertainty of 0.10 × 10−15.


Sensors ◽  
2019 ◽  
Vol 19 (2) ◽  
pp. 386 ◽  
Author(s):  
Chenling Jin ◽  
Chunming Xia ◽  
Shiyu Zhang ◽  
Liren Wang ◽  
Yiqin Wang ◽  
...  

The pulse measurement instrument is based on traditional Chinese medicine (TCM) and is used to collect the pulse of patients to assist in diagnosis and treatment. In the existing pulse measurement system, desktop devices have large volumes, complex pressure adjusting operations, and unstable pressurization. Wearable devices tend to have no pressurization function or the function to pressurize three channels separately, which are not consistent with the diagnostic method in TCM. This study constructs a wearable pulse measurement system using airbags for pressurization. This system uses guide plates, guide grooves, and positioning screws to adjust the relative position of the wristband and locate Cun, Guan and Chi regions. The pulse signal measured by the sensor is collected and sent to a computer by microcontroller unit. In experiments, this system successfully obtains the best pulse-taking pressure, its pulse waveform under continuous decompression, and the pulse waveform of three regions under light, medium, and heavy pressure. Compared with the existing technology, the system has the advantages of supporting single-region and three-region pulse acquisition, independent pressure adjustment, and position adjustment. It meets the needs of home, medical, and experimental research, and it is convenient and comfortable to wear and easy to carry.


2013 ◽  
Vol 483 ◽  
pp. 555-558
Author(s):  
Guang Wei Chen

Based on the analysis of the current railway track parameters measurement system, a digital system based on embedded processor is designed. The paper introduces the principle of the system , structure and methods. The system is still based on the deviation detection principle of three point method, using high brightness light source as a measurement point, in combination with linear CCD imaging features, completed the orbit measurement system of the digital processing, and through the network to complete the communication with PC. The photoelectric measuring system is realized in trajectory parameters of high accuracy and real time measurement; Also for the future development of tamping on railway cars plays a positive role.


Sign in / Sign up

Export Citation Format

Share Document