Analysis and Control of DG Influence on Voltage Profile in Distribution Network

Author(s):  
Mirza Šarić ◽  
Jasna Hivziefendić ◽  
Lejla Bandić
2021 ◽  
Vol 3 (5) ◽  
Author(s):  
Arvind Sharma ◽  
Mohan Kolhe ◽  
Alkistis Kontou ◽  
Dimitrios Lagos ◽  
Panos Kotsampopoulos

Abstract In this paper, solar photovoltaic hosting capacity within the electrical distribution network is estimated for different buses, and the impacts of high PV penetration are evaluated using power hardware-in-loop testing methods. It is observed that the considered operational constraints (i.e. voltage and loadings) and their operational limits have a significant impact on the hosting capacity results. However, with increasing photovoltaic penetration, some of the network buses reach maximum hosting capacity, which affects the network operation (e.g. bus voltages, line loading). The results show that even distributing the maximum hosting capacity among different buses can increase the bus voltage rise to 9%. To maintain the network bus voltages within acceptable limits, reactive power voltage-based droop control is implemented in the photovoltaic conditioning devices to test the dynamics of the network operation. The results show that implementation of the droop control technique can reduce the maximum voltage rise from 9% to 4% in the considered case. This paper also presents the impact of forming a mesh type network (i.e. from radial network) on the voltage profile during PV penetration, and a comparative analysis of the operational performance of a mesh type and radial type electrical network is performed. It is observed that the cumulative effect of forming a mesh type network along with a droop control strategy can further improve the voltage profile and contribute to increase photovoltaic penetration. The results are verified using an experimental setup of digital real-time simulator and power hardware-in-loop test methods. The results from this work will be useful for estimating the appropriate photovoltaic hosting capacity within a distribution network and implementation of a droop control strategy in power conditioning devices to maintain the network operational parameters within the specified limits. Highlights Voltage and line loading constraints’ combination can reduce PV hosting capacity by 50% as compared to only voltage as a constraint. Implementation of reactive power versus voltage droop control in PV power conditioning device can reduce voltage variation from 9% to 4%. In a PV integrated electrical energy network, line loading can be reduced by 20% if the network is configured from radial to mesh type.


Author(s):  
Bawoke Simachew ◽  
baseem khan ◽  
Josep M Guerrero ◽  
Sanjeevikumar *Padmanaban ◽  
Om Prakash Mahela ◽  
...  

In the power distribution network, real power loss and voltage profile management are critical issues. By providing active and reactive power support, both of these issues can be managed. This paper utilized the Meta heuristic-based method for the optimal size and placement of distributed generation (DG) and capacitor (QG) sources for loss reduction by incorporating network current carrying capacity constraint in the optimization problem. The overall problem is optimized using an upgraded method of the fitness assignment and solution chasing based on the aggregate approach called Multi-objective Whale Optimization Algorithm (MWOA). Wind and solar photovoltaic sources are utilized as the distributed generation with their probabilistic outputs. The developed method is tested using two feeders of practical Bahir Dar Distribution Network, Ethiopia. The results of loss minimization and voltage profile management with MWOA are compared with multi-objective particle swam optimization (MPSO) with an equal number of iteration to show the superiority of the developed method.


2020 ◽  
Vol 185 ◽  
pp. 01008
Author(s):  
Lei Ma ◽  
Fan Wen ◽  
Jian Huang ◽  
Xia Pan ◽  
Feifei Xu ◽  
...  

The external severe and complex economic situation has a great impact on the efficiency of the company’s investment implementation. The in-depth implementation of the lean investment management concept also puts forward new requirements for improving the extensive distribution network investment management mode. In addition, in recent years, the proportion of investment in distribution network projects of 10kV and below has increased, and its management mode is difficult to keep up with the new investment management requirements. Therefore, this project takes the infrastructure projects of 10kV and below as the research object, constructs the investment plan curve by studying the business rules of construction, accounting and materials, and deepens its application in the early warning of investment plan implementation based on the investment plan line, and provides an effective support tool for the investment lean management and control of distribution network.


2021 ◽  
Author(s):  
Arnab Pal ◽  
Aniruddha Bhattacharya ◽  
Ajoy Kumar Chakraborty

Abstract Electric vehicle (EV) is the growing vehicular technology for sustainable development to reduce carbon emission and to save fossil fuel. The charging station (CS) is necessary at appropriate locations to facilitate the EV owners to charge their vehicle as well as to keep the distribution system parameters within permissible limits. Besides that, the selection of a charging station is also a significant task for the EV user to reduce battery energy wastage while reaching the EV charging station. This paper presents a realistic solution for the allocation of public fast-charging stations (PFCS) along with solar distributed generation (SDG). A 33 node radial distribution network is superimposed with the corresponding traffic network to allocate PFCSs and SDGs. Two interconnected stages of optimization are used in this work. The first part deals with the optimization of PFCS’s locations and SDG’s locations with sizes, to minimize the energy loss and to improve voltage profile using harris hawk optimization (HHO) and few other soft computing techniques. The second part handles the proper assignment of EVs to the PFCSs with less consumption of the EV’s energy considering the road distances with traffic congestion using linear programming (LP), where the shortest paths are decided by Dijkstra's algorithm. The 2m point estimation method (2m PEM) is employed to handle the uncertainties associated with EVs and SDGs. The robustness of solutions are tested using wilcoxon signed rank test and quade test.


2019 ◽  
Vol 13 (1) ◽  
pp. 17-23
Author(s):  
Helbert Eduardo Espitia Cuchango ◽  
Iván Machón González ◽  
Hilario López García ◽  
Domingo Guzmán Díaz González

Energy distribution systems present alterations in the voltage profile in their nodes when distributed generation elements are installed. As a consequence, tension can be risen in a level beyond the admissible. This paper presents the optimization to three fuzzy controllers located in a distribution network with radial topology. The optimization of each controller is performed using the maximum descent algorithm, which is separately carried out; thus, having a distributed approach. The interaction between generators is considered to perform this process; the results show that the adjustment of the controllers is achieved


Sign in / Sign up

Export Citation Format

Share Document