Improvement of the Voltage Profile of the Distribution Network by Optimal Integration of PVbased Decentralised Source

Author(s):  
Raimon Bawazir ◽  
Numan Cetin ◽  
Mustafa Mosbah ◽  
Salem Arif
2021 ◽  
Vol 3 (5) ◽  
Author(s):  
Arvind Sharma ◽  
Mohan Kolhe ◽  
Alkistis Kontou ◽  
Dimitrios Lagos ◽  
Panos Kotsampopoulos

Abstract In this paper, solar photovoltaic hosting capacity within the electrical distribution network is estimated for different buses, and the impacts of high PV penetration are evaluated using power hardware-in-loop testing methods. It is observed that the considered operational constraints (i.e. voltage and loadings) and their operational limits have a significant impact on the hosting capacity results. However, with increasing photovoltaic penetration, some of the network buses reach maximum hosting capacity, which affects the network operation (e.g. bus voltages, line loading). The results show that even distributing the maximum hosting capacity among different buses can increase the bus voltage rise to 9%. To maintain the network bus voltages within acceptable limits, reactive power voltage-based droop control is implemented in the photovoltaic conditioning devices to test the dynamics of the network operation. The results show that implementation of the droop control technique can reduce the maximum voltage rise from 9% to 4% in the considered case. This paper also presents the impact of forming a mesh type network (i.e. from radial network) on the voltage profile during PV penetration, and a comparative analysis of the operational performance of a mesh type and radial type electrical network is performed. It is observed that the cumulative effect of forming a mesh type network along with a droop control strategy can further improve the voltage profile and contribute to increase photovoltaic penetration. The results are verified using an experimental setup of digital real-time simulator and power hardware-in-loop test methods. The results from this work will be useful for estimating the appropriate photovoltaic hosting capacity within a distribution network and implementation of a droop control strategy in power conditioning devices to maintain the network operational parameters within the specified limits. Highlights Voltage and line loading constraints’ combination can reduce PV hosting capacity by 50% as compared to only voltage as a constraint. Implementation of reactive power versus voltage droop control in PV power conditioning device can reduce voltage variation from 9% to 4%. In a PV integrated electrical energy network, line loading can be reduced by 20% if the network is configured from radial to mesh type.


Author(s):  
Bawoke Simachew ◽  
baseem khan ◽  
Josep M Guerrero ◽  
Sanjeevikumar *Padmanaban ◽  
Om Prakash Mahela ◽  
...  

In the power distribution network, real power loss and voltage profile management are critical issues. By providing active and reactive power support, both of these issues can be managed. This paper utilized the Meta heuristic-based method for the optimal size and placement of distributed generation (DG) and capacitor (QG) sources for loss reduction by incorporating network current carrying capacity constraint in the optimization problem. The overall problem is optimized using an upgraded method of the fitness assignment and solution chasing based on the aggregate approach called Multi-objective Whale Optimization Algorithm (MWOA). Wind and solar photovoltaic sources are utilized as the distributed generation with their probabilistic outputs. The developed method is tested using two feeders of practical Bahir Dar Distribution Network, Ethiopia. The results of loss minimization and voltage profile management with MWOA are compared with multi-objective particle swam optimization (MPSO) with an equal number of iteration to show the superiority of the developed method.


2021 ◽  
Author(s):  
Arnab Pal ◽  
Aniruddha Bhattacharya ◽  
Ajoy Kumar Chakraborty

Abstract Electric vehicle (EV) is the growing vehicular technology for sustainable development to reduce carbon emission and to save fossil fuel. The charging station (CS) is necessary at appropriate locations to facilitate the EV owners to charge their vehicle as well as to keep the distribution system parameters within permissible limits. Besides that, the selection of a charging station is also a significant task for the EV user to reduce battery energy wastage while reaching the EV charging station. This paper presents a realistic solution for the allocation of public fast-charging stations (PFCS) along with solar distributed generation (SDG). A 33 node radial distribution network is superimposed with the corresponding traffic network to allocate PFCSs and SDGs. Two interconnected stages of optimization are used in this work. The first part deals with the optimization of PFCS’s locations and SDG’s locations with sizes, to minimize the energy loss and to improve voltage profile using harris hawk optimization (HHO) and few other soft computing techniques. The second part handles the proper assignment of EVs to the PFCSs with less consumption of the EV’s energy considering the road distances with traffic congestion using linear programming (LP), where the shortest paths are decided by Dijkstra's algorithm. The 2m point estimation method (2m PEM) is employed to handle the uncertainties associated with EVs and SDGs. The robustness of solutions are tested using wilcoxon signed rank test and quade test.


2019 ◽  
Vol 13 (1) ◽  
pp. 17-23
Author(s):  
Helbert Eduardo Espitia Cuchango ◽  
Iván Machón González ◽  
Hilario López García ◽  
Domingo Guzmán Díaz González

Energy distribution systems present alterations in the voltage profile in their nodes when distributed generation elements are installed. As a consequence, tension can be risen in a level beyond the admissible. This paper presents the optimization to three fuzzy controllers located in a distribution network with radial topology. The optimization of each controller is performed using the maximum descent algorithm, which is separately carried out; thus, having a distributed approach. The interaction between generators is considered to perform this process; the results show that the adjustment of the controllers is achieved


2021 ◽  
Vol 9 ◽  
Author(s):  
Mohamed Abdul Rasheed ◽  
Renuga Verayiah

Electricity generation from renewable energy sources such as solar energy is an emerging sustainable solution. In the last decade, this sustainable source was not only being used as a source of power generation but also as distributed generation (DG). Many literatures have been published in this field with the objective to minimize losses by optimizing the DG size and location. System losses and voltage profile go hand-in-hand; as a result, when system losses are minimized, eventually the voltage profile improves. With improvement in inverter technologies, PV-DG units do not have to operate at a unity power factor. The majority of proposed algorithms and methods do not consider power factor optimization as a necessary optimization. This article aims to optimize the size, location, and power factor of PV-DG units. The simulations are performed on the IEEE 33 bus radial distribution network and IEEE 14 bus transmission network. The methodologies developed in this article are divided into two sections. The first section aims to optimize the PV-DG size and location. A multi-objective function is developed by using system losses and a voltage deviation index. Genetic algorithm (GA) is used to optimize the multi-objective function. Next, analytical processes are developed for verification. The second section aims to further enhance PV-DG by optimizing the power factor of PV-DG. The simulation is performed for static load in both systems, which are the IEEE 33 bus radial distribution network and IEEE 14 bus transmission network. A mathematical analytical method was developed, and it was found to be sufficient to optimize the power factor of the PV-DG unit. The results obtained show that voltage stability indices help minimize the computation time by determining the optimal locations for DG placement in both networks. In addition, the GA method attained faster convergence than the analytical method and hence is the best optimal sizing for both test systems with minimum computation time. Additionally, the optimization of the power factor for both test systems has demonstrated further improvement in the voltage profile and loss minimization. In conclusion, the proposed methodology has shown promising results for both transmission and distribution networks.


Author(s):  
Bawoke Simachew

Power loss reduction is an important problem that needs to be addressed with respect to generating electrical power. It is important to reduce power loss using locally generated power sources and/or compensations. This chapter brings a method of presents a method of maximizing energy utilization, feeder loss reduction, and voltage profile improvement for radial distribution network using the active and reactive power sources. Distributed Generation (DG) (wind and solar with backup by biomass generation) and shunt capacitor (QG) for reactive power demand are used. Integrating DG and QG at each bus might reduce the loss but it is economically unaffordable, especially for developing countries. Therefore, the utilization optimization method is required for finding an optimal size and location to feeders for placing QG and DG to minimize feeder loss.


Sign in / Sign up

Export Citation Format

Share Document