Fruit Ripening and QTL for Fruit Quality in the Octoploid Strawberry

Author(s):  
Delphine M. Pott ◽  
José G. Vallarino ◽  
Sonia Osorio ◽  
Iraida Amaya
Keyword(s):  
2021 ◽  
pp. 282-303
Author(s):  
Lynn E. Long ◽  
Gregory A. Lang ◽  
Clive Kaiser

Abstract This chapter provides information on the processes that occur in the sweet cherry fruit during ripening prior to harvest. Some pre-harvest disorders, such as fruit cracking, and their management are presented. Some factors to consider during the harvesting of the fruits are also discussed, along with various harvesting techniques. Some postharvest fruit quality considerations are highlighted and the importance of postharvest temperature and humidity control and safe transport of fruits from the orchard to the packing house are pointed out.


HortScience ◽  
2013 ◽  
Vol 48 (5) ◽  
pp. 608-613 ◽  
Author(s):  
Letizia Tozzini ◽  
Paolo Sabbatini ◽  
G. Stanley Howell

Viticulture in Michigan is often limited by cool and humid climate conditions that impact vine growth and the achievement of adequate fruit quality at harvest. Sugars, pH, acids, and yeast available nitrogen (YAN) are indices of quality and, as such, of suitability for wine production. The aim of this study was to evaluate the efficacy of foliar nitrogen (N) fertilization applied as a 1% w/v urea solution at veraison as a method to increase canopy N availability during the fruit ripening stage. To test the effect on different source sink conditions, we imposed three levels of defoliation (0%, 33%, and 66% of leaves removed per vine) and measured net photosynthetic rate (Pn), leaf efficiency parameters, yield components, and fruit quality parameters. Apical leaf Pn was increased by the 33% defoliation (+12% from the undefoliated control) and by the urea application (+6%) 2 weeks after veraison. In basal leaves we observed a reduction in chlorophyll content (SPAD) and maximum photochemical efficiency of PSII (Fv/Fm) as a result of the defoliation treatment and secondarily by the N application, which resulted in a reduction in Pn. Therefore, mean shoot Pn was unaffected by the treatments. Although neither main nor lateral shoot growth was increased by any defoliation treatment, both percent soluble solids (%SS) and berry weight were significantly reduced by the 66% defoliation treatment. Application of urea increased yeast available amino acids by 20% but did not impact %SS or other chemical parameters indicating a different accumulation pathway for sugars and amino acids in the berry.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
E. Bonora ◽  
D. Stefanelli ◽  
G. Costa

Consistency of fruit quality is extremely important in horticulture. Fruit growth and quality in nectarine are affected by fruit position in the canopy, related to the tree shape. The “open shaped” training systems, such as Tatura Trellis, improve fruit growth and quality. The Index of Absorbance Difference (IAD) is a new marker that characterizes climacteric fruit during ripening. A study on fruit ripening was performed by using theIADon nectarine to monitor fruit maturity stages of two cultivars trained as Tatura Trellis in Victoria, Australia. Fruit of cv “Summer Flare 34” (“SF34”) grown in different positions on the tree showed high ripening homogeneity. Fruit harvested at a similar ripening stage showed fruit firmness and soluble solid content homogeneity. Fruits from hand-thinned variety “Summer Flare 26” (“SF26”) were larger in size, had advanced ripening, and showed greater homogeneity. For “SF26”, a weak correlation betweenIADand SSC was observed. The experiment showed that the Tatura Trellis training system is characterized by high homogeneity of nectarine fruit when coupled with a proper management of fruit density. It also confirmed that theIADcould be used as new nondestructive maturity index for nectarine fruit quality assessment in the field.


2017 ◽  
Vol 226 ◽  
pp. 68-74 ◽  
Author(s):  
A. Galindo ◽  
Á. Calín-Sánchez ◽  
I. Griñán ◽  
P. Rodríguez ◽  
Z.N. Cruz ◽  
...  

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Taishan Li ◽  
Hisayo Yamane ◽  
Ryutaro Tao

AbstractUltraviolet-B (UV-B) light (280–315 nm) is an important environmental signal that regulates plant development and photomorphogenesis, while also affecting the flavonoid pathway, including anthocyanin biosynthesis. Regarding the effects of UV-B radiation on fruits, the effects of a short-term or postharvest irradiation on fruit quality have been well-documented, but the effects of a long-term preharvest UV-B irradiation on fruit growth and coloration remain unclear. Thus, in this study, we investigated the effects of a long-term treatment involving an environmentally relevant UV-B dose on highbush blueberry (Vaccinium corymbosum) fruit. The preharvest UV-B treatment quickly promoted fruit growth and sugar accumulation, which is not commonly observed in other fruit tree species. The UV-B exposure also accelerated fruit ripening and coloration. The dual-luciferase assay proved that in blueberries, expression of VcUFGT encoding anthocyanin biosynthesis key enzyme, is positively and negatively regulated by VcMYBA1 and VcMYBC2, respectively. Throughout the fruit development stage, the UV-B treatment up-regulated VcMYBPA1 expression, which increased VcUFGT expression via VcMYBA1. In the green fruit stage, the UV-B treatment increased HY5 encoding UV receptor, which up-regulates VcMYBPA1 and down-regulates VcMYBC2, thereby promotes the accumulation of anthocyanins. On the other hand, excessive anthocyanin synthesis was inhibited by increased VcMYBC2 levels in mature fruits when exposed to UV-B light through HY5-independent pathway. In conclusion, anthocyanin-related MYB activators and repressor may coordinately balance the accumulation of anthocyanins in blueberry fruits, with UV-B treatments possibly influencing their effects in a stage-specific manner. The potential utility of preharvest UV-B treatments for improving blueberry fruit quality is discussed herein.


2020 ◽  
Author(s):  
Jiaqi Zhou ◽  
Bixuan Chen ◽  
Karin Albornoz ◽  
Diane M Beckles

AbstractPostharvest handling of tomato (Solanum lycopersicum L.), specifically low-temperature storage and early harvest are used to extend shelf life, but often reduce fruit quality. Recent work suggests that DNA methylation dynamics influences fruit ripening through the demethylase SlDML2 gene. However, the influence of postharvest handling on DNA methylation in relation to fruit quality is unclear. This work aimed to clarify these issues by analyzing DNA methylation using methyl-sensitive amplification polymorphism (MSAP), semi-quantitative transcriptional analysis of marker genes for fruit quality (RIN; RIPENING INHIBITOR) and DNA methylation (SlDML2; Solanum lycopersicum L. DNA demethylase 2), and, fruit biochemical quality biomarkers. Multivariate analysis of these data supported the view that DNA methylation of fruit was influenced more by postharvest handling than ripening stage, however, fruit quality was influenced mainly by ripening. Fruit chilled postharvest were distinct in their DNA methylation state and quality characteristics, which implied that these three phenomena i.e., chilling, methylation, and quality are highly connected. In addition, different postharvest handling methods modulated SlDML2 transcript levels but had little effect on the level of RIN transcripts in fruit that reached the Turning stage after early harvest, and cold storage. These data collectively helped to advance our interpretation of tomato fruit ripening. In conclusion, our findings revealed that postharvest-induced variation in fruit quality is in relation to DNA methylation. Long-term this work will help better connect physiological changes in tomato fruit to events happening at the molecular level.


Sign in / Sign up

Export Citation Format

Share Document