Selected Trade-Offs and Risks Associated with Land Use Transitions in Central Germany

2019 ◽  
pp. 129-134
Author(s):  
Joerg A. Priess ◽  
Christian Hoyer ◽  
Greta Jäckel ◽  
Eva Lang ◽  
Sebastian Pomm ◽  
...  
Keyword(s):  
Land Use ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 528 ◽  
Author(s):  
Jingye Li ◽  
Jian Gong ◽  
Jean-Michel Guldmann ◽  
Shicheng Li ◽  
Jie Zhu

Land use/cover change (LUCC) has an important impact on the terrestrial carbon cycle. The spatial distribution of regional carbon reserves can provide the scientific basis for the management of ecosystem carbon storage and the formulation of ecological and environmental policies. This paper proposes a method combining the CA-based FLUS model and the Integrated Valuation of Ecosystem Services and Trade-offs (InVEST) model to assess the temporal and spatial changes in ecosystem carbon storage due to land-use changes over 1990–2015 in the Qinghai Lake Basin (QLB). Furthermore, future ecosystem carbon storage is simulated and evaluated over 2020–2030 under three scenarios of natural growth (NG), cropland protection (CP), and ecological protection (EP). The long-term spatial variations in carbon storage in the QLB are discussed. The results show that: (1) Carbon storage in the QLB decreased at first (1990–2000) and increased later (2000–2010), with total carbon storage increasing by 1.60 Tg C (Teragram: a unit of mass equal to 1012 g). From 2010 to 2015, carbon storage displayed a downward trend, with a sharp decrease in wetlands and croplands as the main cause; (2) Under the NG scenario, carbon reserves decrease by 0.69 Tg C over 2020–2030. These reserves increase significantly by 6.77 Tg C and 7.54 Tg C under the CP and EP scenarios, respectively, thus promoting the benign development of the regional ecological environment. This study improves our understanding on the impact of land-use change on carbon storage for the QLB in the northeastern Qinghai–Tibetan Plateau (QTP).


Author(s):  
Lisa Best ◽  
Kimberley Fung-Loy ◽  
Nafiesa Ilahibaks ◽  
Sara O. I. Ramirez-Gomez ◽  
Erika N. Speelman

AbstractNowadays, tropical forest landscapes are commonly characterized by a multitude of interacting institutions and actors with competing land-use interests. In these settings, indigenous and tribal communities are often marginalized in landscape-level decision making. Inclusive landscape governance inherently integrates diverse knowledge systems, including those of indigenous and tribal communities. Increasingly, geo-information tools are recognized as appropriate tools to integrate diverse interests and legitimize the voices, values, and knowledge of indigenous and tribal communities in landscape governance. In this paper, we present the contribution of the integrated application of three participatory geo-information tools to inclusive landscape governance in the Upper Suriname River Basin in Suriname: (i) Participatory 3-Dimensional Modelling, (ii) the Trade-off! game, and (iii) participatory scenario planning. The participatory 3-dimensional modelling enabled easy participation of community members, documentation of traditional, tacit knowledge and social learning. The Trade-off! game stimulated capacity building and understanding of land-use trade-offs. The participatory scenario planning exercise helped landscape actors to reflect on their own and others’ desired futures while building consensus. Our results emphasize the importance of systematically considering tool attributes and key factors, such as facilitation, for participatory geo-information tools to be optimally used and fit with local contexts. The results also show how combining the tools helped to build momentum and led to diverse yet complementary insights, thereby demonstrating the benefits of integrating multiple tools to address inclusive landscape governance issues.


Water ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1433
Author(s):  
Navneet Kumar ◽  
Asia Khamzina ◽  
Patrick Knöfel ◽  
John P. A. Lamers ◽  
Bernhard Tischbein

Climate change is likely to decrease surface water availability in Central Asia, thereby necessitating land use adaptations in irrigated regions. The introduction of trees to marginally productive croplands with shallow groundwater was suggested for irrigation water-saving and improving the land’s productivity. Considering the possible trade-offs with water availability in large-scale afforestation, our study predicted the impacts on water balance components in the lower reaches of the Amudarya River to facilitate afforestation planning using the Soil and Water Assessment Tool (SWAT). The land-use scenarios used for modeling analysis considered the afforestation of 62% and 100% of marginally productive croplands under average and low irrigation water supply identified from historical land-use maps. The results indicate a dramatic decrease in the examined water balance components in all afforestation scenarios based largely on the reduced irrigation demand of trees compared to the main crops. Specifically, replacing current crops (mostly cotton) with trees on all marginal land (approximately 663 km2) in the study region with an average water availability would save 1037 mln m3 of gross irrigation input within the study region and lower the annual drainage discharge by 504 mln m3. These effects have a considerable potential to support irrigation water management and enhance drainage functions in adapting to future water supply limitations.


Land ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 582
Author(s):  
Peng Tian ◽  
Jialin Li ◽  
Luodan Cao ◽  
Ruiliang Pu ◽  
Hongbo Gong ◽  
...  

Ecosystem services (ESs) is a term used to describe the foundations of the well-being of human society, and several relevant studies have been carried out in this area. However, given the fact that the complex trade-offs/synergy relationships of ESs are a challenging area, studies on matching mechanisms for ES supply and demand are still rare. In this study, using the InVEST model, ArcGIS, and other professional tools, we first mapped and quantitatively evaluated the supply and demand of five ES types (water yield, soil conservation, carbon retention, food supply, and leisure and entertainment) in Hangzhou, China, based on land use, meteorology, soil, and socio-economic data. Then, we analyzed the matching characteristics between the supply and demand of these ESs and analyzed the complex trade-offs and synergy between the supply and demand of ESs and factors affecting ESs. The results of this analysis indicate that although the ES supply and demand of carbon retention tended to be out of balance (supply was less than demand), the supply and demand of the other four ES types (i.e., water yield, soil conservation, food supply, and leisure and entertainment) were in balance (supply exceeded demand). Finally, the spatial heterogeneity of the supply and demand of ESs in Hangzhou was significant, especially in urban areas in the northeast and mountainous areas in the southwest. The supply of ESs was based on trade-offs, whereas the demand of ESs was based on synergy. Our results further show that the supply and demand of ESs in the urban area in Hangzhou were out of balance, whereas the supply and demand of ESs in the western region were coordinated. Therefore, the linkage of ES flows between this urban area and the western region should be strengthened. This innovative study could provide useful information for regional land use planning and environmental protection.


2012 ◽  
Vol 26 (5) ◽  
pp. 883-893 ◽  
Author(s):  
VAN BUTSIC ◽  
VOLKER C. RADELOFF ◽  
TOBIAS KUEMMERLE ◽  
ANNA M. PIDGEON

Author(s):  
Jiren Xu ◽  
Fabrice G. Renaud ◽  
Brian Barrett

AbstractA more holistic understanding of land use and land cover (LULC) will help minimise trade-offs and maximise synergies, and lead to improved future land use management strategies for the attainment of Sustainable Development Goals (SDGs). However, current assessments of future LULC changes rarely focus on the multiple demands for goods and services, which are related to the synergies and trade-offs between SDGs and their targets. In this study, the land system (combinations of land cover and land use intensity) evolution trajectories of the Luanhe River Basin (LRB), China, and major challenges that the LRB may face in 2030, were explored by applying the CLUMondo and InVEST models. The results indicate that the LRB is likely to experience agricultural intensification and urban growth under all four scenarios that were explored. The cropland intensity and the urban growth rate were much higher under the historical trend (Trend) scenario compared to those with more planning interventions (Expansion, Sustainability, and Conservation scenarios). Unless the forest area and biodiversity conservation targets are implemented (Conservation scenario), the forest areas are projected to decrease by 2030. The results indicate that water scarcity in the LRB is likely to increase under all scenarios, and the carbon storage will increase under the Conservation scenario but decrease under all other scenarios by 2030. Our methodological framework and findings can guide regional sustainable development in the LRB and other large river basins in China, and will be valuable for policy and planning purposes to the pursuance of SDGs at the sub-national scale.


2020 ◽  
Vol 6 (53) ◽  
pp. 53-69
Author(s):  
Martin Lopez

AbstractMitigation and adaptation are the main strategies to address climate change. Both of them are interrelated instruments and key elements of an integral approach to tackle the phenomenon. This interrelation is particularly strong in the land use sector, an area in which practically any policy has a significant effect on the goals of both strategies. Yet, in practice, mitigation and adaptation are treated as two different instruments. A poor understanding about the interactions between the mentioned strategies remains as a barrier to implement the integrated approach. To contribute to fill-in this knowledge gap, a hypothetical ecologic-economic system simulated under deep uncertainty was used to test environmental and welfare implications of different policy configurations. Taking the unregulated economy as a benchmark, the outcomes of the mentioned interventions were classified as synergies or different forms of trade-offs. Results indicate that measures based on internalization of externalities overcame monetary compensation schemes. Moreover, when externalities were corrected, synergies were more frequent and associated to higher environmental and welfare gains. Furthermore, the policy configuration that exhibited best synergic properties was an intervention integrating mitigation and adaptation measures. This indicates that synergies may be more accessible than previously considered, however, current policy approach and incentives may not be the best tools to trigger them.


Sign in / Sign up

Export Citation Format

Share Document