Analysis of the Rotor Supported by Gas Foil Bearings Considering the Assembly Preload and Hardening Effect

Author(s):  
Grzegorz Żywica ◽  
Jan Kiciński ◽  
Małgorzata Bogulicz
Author(s):  
Dario Rubio ◽  
Luis San Andres

Gas foil bearings (FB) satisfy many of the requirements noted for novel oil-free turbomachinery. However, FB design remains largely empirical, in spite of successful commercial applications. The mechanical structural characteristics of foil bearings, namely stiffness and damping, have been largely ignored in the archival literature. Four commercial bump-type foil bearings were acquired to measure their load capacity under conditions of no shaft rotation. The test bearings contain a single Teflon coated foil supported on 25 bumps. The nominal radial clearance is 0.036 mm for a 38 mm journal. A simple test set up was assembled to measure the FB deflections resulting from static loads. The tests were conducted with three shafts of increasing diameter to induce a degree of preload into the FB structure. Static measurements show nonlinear FB deflections, varying with the orientation of the load relative to the foil spot weld. Loading and unloading tests evidence hysteresis. The FB structural stiffness increases as the bumps-foil radial deflection increases (hardening effect). The assembly preload results in notable stiffness changes, in particular for small radial loads. A simple analytical model assembles individual bump stiffnesses and renders predictions for the FB structural stiffness as a function of the bump geometry and material, dry-friction coefficient, load orientation, clearance and preload. The model predicts well the test data, including the hardening effect. The uncertainty in the actual clearance (gap) upon assembly of a shaft into a FB affects most the predictions.


Author(s):  
Hao Li ◽  
Haipeng Geng ◽  
Bo Wang ◽  
Wei Zheng

In this paper, a rotordynamic experiment on a compressor rotor system is presented and the feasibility of gas foil bearings with inhomogeneous bump foils is verified. A push–pull device is designed to obtain the stiffness curve and the nominal clearance of foil bearings. Operating points and dynamic coefficients of the rotor system at each rotating speed are predicted. In rotordynamic analysis, an alternative model of the impeller is proposed and the critical speed is predicted by employing the finite element method, in which the dynamic coefficients of inhomogeneous foil bearings are taken into account. Compared with the experimental result, the accuracy of the prediction for the critical speed is verified to be about 14% error. Two sets of foil bearings with 22 and 41 μm nominal clearance are manufactured and tested. Test results indicate that the vibration amplitude can be greatly reduced by diminishing the bearing clearance. When foil bearings with 22 μm clearance are used, the high-order harmonic frequencies of rotor vibration are significantly inhibited, and the amplitude of the rotating frequency is obviously restricted. Thus, the foil bearing with inhomogeneous bump foils tested in this paper can meet the speed requirement of the compressor when the nominal clearance is set at 22 μm.


2007 ◽  
Vol 129 (3) ◽  
pp. 628-639 ◽  
Author(s):  
Ju-ho Song ◽  
Daejong Kim

A new foil gas bearing with spring bumps was constructed, analyzed, and tested. The new foil gas bearing uses a series of compression springs as compliant underlying structures instead of corrugated bump foils. Experiments on the stiffness of the spring bumps show an excellent agreement with an analytical model developed for the spring bumps. Load capacity, structural stiffness, and equivalent viscous damping (and structural loss factor) were measured to demonstrate the feasibility of the new foil bearing. Orbit and coast-down simulations using the calculated stiffness and measured structural loss factor indicate that the damping of underlying structure can suppress the maximum peak at the critical speed very effectively but not the onset of hydrodynamic rotor-bearing instability. However, the damping plays an important role in suppressing the subsynchronous vibrations under limit cycles. The observation is believed to be true with any air foil bearings with different types of elastic foundations.


2006 ◽  
Vol 129 (3) ◽  
pp. 850-857 ◽  
Author(s):  
Luis San Andrés ◽  
Dario Rubio ◽  
Tae Ho Kim

Gas foil bearings (GFBs) satisfy the requirements for oil-free turbomachinery, i.e., simple construction and ensuring low drag friction and reliable high speed operation. However, GFBs have a limited load capacity and minimal damping, as well as frequency and amplitude dependent stiffness and damping characteristics. This paper provides experimental results of the rotordynamic performance of a small rotor supported on two bump-type GFBs of length and diameter equal to 38.10mm. Coast down rotor responses from 25krpm to rest are recorded for various imbalance conditions and increasing air feed pressures. The peak amplitudes of rotor synchronous motion at the system critical speed are not proportional to the imbalance introduced. Furthermore, for the largest imbalance, the test system shows subsynchronous motions from 20.5krpm to 15krpm with a whirl frequency at ∼50% of shaft speed. Rotor imbalance exacerbates the severity of subsynchronous motions, thus denoting a forced nonlinearity in the GFBs. The rotor dynamic analysis with calculated GFB force coefficients predicts a critical speed at 8.5krpm, as in the experiments; and importantly enough, unstable operation in the same speed range as the test results for the largest imbalance. Predicted imbalance responses do not agree with the rotor measurements while crossing the critical speed, except for the lowest imbalance case. Gas pressurization through the bearings’ side ameliorates rotor subsynchronous motions and reduces the peak amplitudes at the critical speed. Posttest inspection reveal wear spots on the top foils and rotor surface.


Sign in / Sign up

Export Citation Format

Share Document