Impact of Structural Damage Zones on Slope Stability: A Case Study from Mandakini Valley, Uttarakhand State (India)

Author(s):  
Mohit Kumar ◽  
Ramesh Chander Joshi ◽  
Pitamber Dutt Pant
2011 ◽  
Vol 11 (6) ◽  
pp. 1745-1758 ◽  
Author(s):  
G. Ç. İnce

Abstract. Istanbul city has experienced many strong earthquakes throughout its history and suffered extensive damage. The old Istanbul (Fatih and Eminonu districts), one of the most densely populated locations of Istanbul city, is a commercial centre and has many significant historical buildings. In this study, the data pertaining to the damage sustained by historical artifacts and structures from past earthquakes, are examined along with the soil amplification of the region, the liquefaction and slope stability risk in relation to the seismic microzonation maps which were prepared using geographic information system techniques. The relationship between soil behaviour and the damage resulting from previous earthquakes. The structural damage observed in the region was in accordance with the microzonation maps. Since the area does not have a high risk in terms of slope stability, this does not have much impact on the level of damage. However, it was found that soil amplification and partial liquefaction contributed to the damage to historical artifacts and structures.


2010 ◽  
Vol 163-167 ◽  
pp. 2709-2714
Author(s):  
Feng Guo ◽  
Wei Ya Xu ◽  
Fei Xu

Evaluation of slope stability in the hydropower project construction is extremely important. This Cloud Model will be introduced to the matter-element extension, the extension assessment is proposed based on the sutra field division of the slope stability assessment model. This method combines the Cloud Model theory and the advantages of the extension assessment .On the one hand, the division of the sutra field by means of Cloud Model can overcome the "hard" division of the evils. On the other hand,with different values of Cloud Drops as a sutra field, the statistical results of Cloud Drops can be used as last stable assessment results. Project case study shows that compared with the conventional method, results of the method of extension are more accurate, which fully accorded with the actual state, proving optimized based on Cloud Model extension assessment of slope stability feasible and effective.


2019 ◽  
Vol 26 (4) ◽  
pp. 39-46 ◽  
Author(s):  
Ozgur Ozguc

Abstract Offshore structures are exposed to the risk of damage caused by various types of extreme and accidental events, such as fire, explosion, collision, and dropped objects. These events cause structural damage in the impact area, including yielding of materials, local buckling, and in some cases local failure and penetration. The structural response of an FPSO hull subjected to events involving dropped objects is investigated in this study, and non-linear finite element analyses are carried out using an explicit dynamic code written LS-DYNA software. The scenarios involving dropped objects are based on the impact from the fall of a container and rigid mechanical equipment. Impact analyses of the dropped objects demonstrated that even though some structural members were permanently deformed by drop loads, no failure took place in accordance with the plastic strain criteria, as per NORSOK standards. The findings and insights derived from the present study may be informative in the safe design of floating offshore structures.


2019 ◽  
Vol 14 (13) ◽  
pp. 4387-4404 ◽  
Author(s):  
Omoniyi Olusegun Ige ◽  
Tolulope Oyeleke ◽  
Christopher Baiyegunhi ◽  
Temitope Love Baiyegunhi

Landslides ◽  
2016 ◽  
Vol 14 (4) ◽  
pp. 1389-1401 ◽  
Author(s):  
Carolina de Lima Neves Seefelder ◽  
Sérgio Koide ◽  
Martin Mergili

Sign in / Sign up

Export Citation Format

Share Document