Anomalous Water Optical Absorption: Large-Scale First-Principles Simulations

Author(s):  
W. G. Schmidt ◽  
S. Blankenburg ◽  
S. Wippermann ◽  
A. Hermann ◽  
P. H. Hahn ◽  
...  
2019 ◽  
Author(s):  
Mohammad Atif Faiz Afzal ◽  
Mojtaba Haghighatlari ◽  
Sai Prasad Ganesh ◽  
Chong Cheng ◽  
Johannes Hachmann

<div>We present a high-throughput computational study to identify novel polyimides (PIs) with exceptional refractive index (RI) values for use as optic or optoelectronic materials. Our study utilizes an RI prediction protocol based on a combination of first-principles and data modeling developed in previous work, which we employ on a large-scale PI candidate library generated with the ChemLG code. We deploy the virtual screening software ChemHTPS to automate the assessment of this extensive pool of PI structures in order to determine the performance potential of each candidate. This rapid and efficient approach yields a number of highly promising leads compounds. Using the data mining and machine learning program package ChemML, we analyze the top candidates with respect to prevalent structural features and feature combinations that distinguish them from less promising ones. In particular, we explore the utility of various strategies that introduce highly polarizable moieties into the PI backbone to increase its RI yield. The derived insights provide a foundation for rational and targeted design that goes beyond traditional trial-and-error searches.</div>


2000 ◽  
Vol 64 (2) ◽  
pp. 311-317 ◽  
Author(s):  
M. C. Warren ◽  
M. T. Dove ◽  
S. A. T. Redfern

AbstractAt high temperature, MgAl2O4 spinel is stabilized by disorder of Mg and Al between octahedral and tetrahedral sites. This behaviour has been measured up to 1700 K in recent neutron experiments, but the extrapolation of subsequently fitted thermodynamic models is not reliable. First principles simulation of the electronic structure of such minerals can in principle accurately predict disorder, but would require unfeasibly large computing resources. We have instead parameterized on-site and short-ranged cluster potentials using a small number of electronic structure simulations at zero temperature. These potentials were then used in large-scale statistical simulations at finite temperatures to predict disordering thermodynamics beyond the range of experimental measurements. Within the temperature range of the experiment, good agreement is obtained for the degree of order. The entropy and free energy are calculated and compared to those from macroscopic models.


Author(s):  
Hsien-Wang Ou

This paper considers the general ocean circulation within the thermodynamical closure of our climate theory, which aims to deduce the generic climate state from first principles. The preceding papers of the theory have reduced planetary fluids to warm/cold masses and determined their bulk thermal properties, which provide prior constraints for the derivation of the upper-bound circulation when the potential vorticity is homogenized in moving masses. In a companion paper on the atmosphere, this upper bound is seen to reproduce the prevailing wind, forsaking therefore previous discordant explanations of the easterly trade and the polar jet stream. In this paper on the ocean, we again show that this upper bound may replicate broad features of the observed circulation, including a western-intensified subtropical gyre and a counter-rotating tropical gyre feeding the equatorial undercurrent. Together, we posit that PV homogenization may provide a unifying dynamical principle of the large-scale planetary circulation, which may be interpreted as the maximum macroscopic motion extractable by microscopic stirring --- within the confine of the thermal differentiation.


2020 ◽  
Author(s):  
Junting Yu ◽  
Tianshou Zhao ◽  
Ding Pan

<div>Aqueous organic redox flow batteries have many appealing properties in the application of large-scale energy storage. The large chemical tunability of organic electrolytes shows great potential to improve the performance of flow batteries. Computational studies at the quantum-mechanics level are very useful to guide experiments, but in previous studies explicit water interactions and thermodynamic effects were ignored. Here, we applied the computational electrochemistry method based on ab initio molecular dynamics to calculate redox potentials of quinones and their derivatives. The calculated results are in excellent agreement with experimental data. We mixed side chains to tune their reduction potentials, and found that solvation interactions and entropy effects play a significant role in side-chain engineering. Based on our calculations, we proposed several high-performance negative and positive electrolytes. Our first-principles study paves the way towards the development of large-scale and sustainable electrical energy storage.</div>


2021 ◽  
Author(s):  
Jānis Puķīte ◽  
Christian Borger ◽  
Steffen Dörner ◽  
Myojeong Gu ◽  
Udo Frieß ◽  
...  

Abstract. The TROPOspheric Monitoring Instrument (TROPOMI) is a UV-VIS-NIR-SWIR instrument on board of Sentinel-5P satellite developed for monitoring the Earth’s atmosphere. It was launched on 13 October 2017 in a near polar orbit. It measures spectrally resolved earthshine radiances at an unprecedented spatial resolution of around 3.5 x 7.2 km² (3.5 x 5.6 km² starting from 6 Aug 2019) (near nadir) with a total swath width of ~ 2600 km on the Earth's surface providing daily global coverage. From the measured spectra high resolved trace gas distributions can be retrieved by means of differential optical absorption spectroscopy (DOAS). Chlorine dioxide (OClO) is a by-product of the ozone depleting halogen chemistry in the stratosphere. Although being rapidly photolysed at low solar zenith angles (SZAs) it plays an important role as an indicator of the chlorine activation in polar regions during polar winter and spring at twilight conditions because of the nearly linear dependence of its formation to chlorine oxide (ClO). Here we present a new retrieval algorithm of the slant column densities (SCDs) of chlorine dioxide (OClO) by DOAS. To achieve a substantially improved accuracy, which is especially important for OClO observations, accounting for absorber and pseudo absorber structures in optical depth even of the order of 10−4 is important. Therefore in comparison to existing retrievals, we include several additional fit parameters accounting for spectral effects like the temperature dependency of the Ring effect and Ring absorption effects, higher order term for the OClO SCD dependency on wavelength and account for the BrO absorption. We investigate the performance of different retrieval settings by an error analysis with respect to random variations, large scale systematic variations as function of solar zenith angle and also more localised systematic variations by a novel application of an autocorrelation analysis. The retrieved TROPOMI OClO SCDs show a very good agreement with ground based zenith sky measurements and are correlated well with preliminary data of the opeartional TROPOMI OClO retrieval algorithm currently being developed as part of ESA's S5p+I project.


2018 ◽  
Vol 97 (10) ◽  
Author(s):  
Bartomeu Monserrat ◽  
Cyrus E. Dreyer ◽  
Karin M. Rabe

Sign in / Sign up

Export Citation Format

Share Document