Multiresolutive Adaptive PN Acquisition Scheme with a Fuzzy Logic Estimator in Non Selective Fast SNR Variation Environments

Author(s):  
Rosa Maria Alsina Pagès ◽  
Clàudia Mateo Segura ◽  
Joan Claudi Socoró Carrié
Author(s):  
Rosa Maria Alsina Pagès ◽  
Clàudia Mateo Segura ◽  
Joan-Claudi Socoró Carrié

The acquisition system is one of the most sensitive stages in a Direct Sequence Spread Spectrum (DS-SS) receiver (Peterson, Ziemer & Borth, 1995), due to its critical position in order to demodulate the received information. There are several schemes to deal with this problem, such as serial search and parallel algorithms (Proakis, 1995). Serial search algorithms have slow convergence time but their computational load is very low; on the other hand, parallel systems converge very quickly but their computational load is very high. In our system, the acquisition scheme used is the multiresolutive structure presented in (Moran, Socoró, Jové, Pijoan & Tarrés, 2001), which combines quick convergence and low computational load. The decisional system that evaluates the acquisition stage is a key process in the overall system performance, being a drawback of the structure. This becomes more important when dealing with time-varying channels, where signal to noise ratio (called SNR) is not a constant parameter. Several factors contribute to the performance of the acquistion system (Glisic & Vucetic, 1997): channel distorsion and variations, noise and interference, uncertainty about the code phase, and data randomness. The existence of all these variables led us to think about the possibility of using fuzzy logic to solve this complex acquisition estimation (Zadeh, 1973). A fuzzy logic acquisition estimator had already been tested and used in our research group to control a serial search algorithm (Alsina, Morán & Socoró, 2005) with encouraging results, and afterwards in the multiresolutive scheme (Alsina, Mateo & Socoró, 2007), and other applications to this field can be found in bibliography as (Bas, Pérez & Lagunas, 2001) or (Jang, Ha, Seo, Lee & Lee, 1998). Several previous works have been focused in the development of acquisition systems for non frequency selective channels with fast SNR variations (Moran, Socoró, Jové, Pijoan & Tarrés, 2001) (Mateo & Alsina, 2004).


2012 ◽  
Author(s):  
Thomas M. Crawford ◽  
Justin Fine ◽  
Donald Homa
Keyword(s):  

1997 ◽  
Vol 36 (04/05) ◽  
pp. 368-371
Author(s):  
R. Soma ◽  
Y. Yamamoto

Abstract.A new method was developed for continuous isotopic estimation of human whole body CO2 rate of appearance (Ra) during non-steady state exercise. The technique consisted of a breath-by-breath measurement of 13CO2 enrichment (E) and a real-time fuzzy logic feedback system which controlled NaH13CO3 infusion rate to achieve an isotopic steady state. Ra was estimated from the isotope infusion rate and body 13CO2 enrichment which was equal to E at the isotopic steady state. During a non-steady state incremental cycle exercise (5 w/min or 10 w/min), NaH13CO3 infusion rate was successfully increased by the action of feedback controller so as to keep E constant.


2020 ◽  
Vol 39 (6) ◽  
pp. 8357-8364
Author(s):  
Thompson Stephan ◽  
Ananthnarayan Rajappa ◽  
K.S. Sendhil Kumar ◽  
Shivang Gupta ◽  
Achyut Shankar ◽  
...  

Vehicular Ad Hoc Networks (VANETs) is the most growing research area in wireless communication and has been gaining significant attention over recent years due to its role in designing intelligent transportation systems. Wireless multi-hop forwarding in VANETs is challenging since the data has to be relayed as soon as possible through the intermediate vehicles from the source to destination. This paper proposes a modified fuzzy-based greedy routing protocol (MFGR) which is an enhanced version of fuzzy logic-based greedy routing protocol (FLGR). Our proposed protocol applies fuzzy logic for the selection of the next greedy forwarder to forward the data reliably towards the destination. Five parameters, namely distance, direction, speed, position, and trust have been used to evaluate the node’s stability using fuzzy logic. The simulation results demonstrate that the proposed MFGR scheme can achieve the best performance in terms of the highest packet delivery ratio (PDR) and minimizes the average number of hops among all protocols.


2018 ◽  
Vol 2 (1) ◽  
Author(s):  
Raid Daoud ◽  
Yaareb Al-Khashab

The internet service is provided by a given number of servers located in the main node of internet service provider (ISP). In some cases; the overload problem was occurred because a demand on a given website goes to very high level. In this paper, a fuzzy logic control (FLC) has proposed to distribute the load into the internet servers by a smart and flexible manner. Three effected parameters are tacked into account as input for FLC: link capacity which has three linguistic variables with Gaussian membership function (MF): (small, medium and big), traffic density with linguistic variables (low, normal and high) and channel latency with linguistic variables (empty, half and full); with one output which is the share server status (single, simple and share). The proposed work has been simulated by using MATLAB 2016a, by building a structure in the Fuzzy toolbox. The results were fixed by two manners: the graphical curves and the numerical tables, the surface response was smoothly changed and translates the well-fixed control system. The numerical results of the control system satisfy the idea of the smart rout for the incoming traffics from the users to internet servers. So, the response of the proposed system for the share of server ratio is 0.122, when the input parameter in the smallest levels; and the ratio is 0.879 when the input parameters are in highest level. The smart work and flexible use for the FLC is the main success solution for most of today systems control.


Author(s):  
Fachrudin Hunaini ◽  
Imam Robandi ◽  
Nyoman Sutantra

Fuzzy Logic Control (FLC) is a reliable control system for controlling nonlinear systems, but to obtain optimal fuzzy logic control results, optimal Membership Function parameters are needed. Therefore in this paper Particle Swarm Optimization (PSO) is used as a fast and accurate optimization method to determine Membership Function parameters. The optimal control system simulation is carried out on the automatic steering system of the vehicle model and the results obtained are the vehicle's lateral motion error can be minimized so that the movement of the vehicle can always be maintained on the expected trajectory


Sign in / Sign up

Export Citation Format

Share Document