Advances in Diagnosis of Biological Anaerobic Wastewater Treatment Plants

Author(s):  
L. Lardon ◽  
J. P. Steyer
2002 ◽  
Vol 45 (10) ◽  
pp. 195-200 ◽  
Author(s):  
A. Puñal ◽  
J. Rodríguez ◽  
E.F. Carrasco ◽  
E. Roca ◽  
J.M. Lema

A diagnosis system for anaerobic wastewater treatment processes is presented. The system is able to recognise the state and trend of the operation and suggest the appropriate control action. The on-line variables measured were gas flow rate and composition (methane and carbon monoxide), feed and recycling flow rates, temperature and pH, while the manipulable inputs are feed, recycling and buffer-addition flow rates. The diagnosis system comprises a structured rule base, incorporating expert knowledge using fuzzy logic features. The structure of the system is based on the classification of information related to the process in three categories: i) the state of the process, ii) its trend and iii) the recommended set-point values for the inputs manipulated: feeding, buffer and recycling pumps. The system was applied to diagnose the operation of a 1.1 m3 hybrid UASB-UAF treating wastewater from a fibreboard production factory under different conditions (overload and underload), corresponding to some of the typical causes of destabilisation in anaerobic wastewater treatment plants. These situations require control action in order to maintain the stability and the treatment capacity of the reactor. The application of the system developed for the purpose of managing the situation proved to be reliable for supplying the actual state and trend of the process, as well as the adequate set point values to recover stable operation and/or to avoid further destabilisation.


2005 ◽  
Vol 52 (1-2) ◽  
pp. 457-464 ◽  
Author(s):  
O. Bernard ◽  
B. Chachuat ◽  
A. Hélias ◽  
B. Le Dantec ◽  
B. Sialve ◽  
...  

The TELEMAC project brings new methodologies from the Information and Science Technologies field to the world of water treatment. TELEMAC offers an advanced remote management system which adapts to most of the anaerobic wastewater treatment plants that do not benefit from a local expert in wastewater treatment. The TELEMAC system takes advantage of new sensors to better monitor the process dynamics and to run automatic controllers that stabilise the treatment plant, meet the depollution requirements and provide a biogas quality suitable for cogeneration. If the automatic system detects a failure which cannot be solved automatically or locally by a technician, then an expert from the TELEMAC Control Centre is contacted via the internet and manages the problem.


1996 ◽  
Vol 34 (5-6) ◽  
pp. 393-401 ◽  
Author(s):  
Wolf Merkel ◽  
Alexander Schwarz ◽  
Sebastian Fritz ◽  
Matthias Reuss ◽  
Karlheinz Krauth

Approaches to mathematical modelling of anaerobic digestion and criteria for reactor design in anaerobic wastewater treatment are based on biological degradation kinetics. Whatever type of kinetics is used, the crucial problem always is reliable parameter estimation. For Monod-type kinetics a concept based on batch and fed-batch techniques is presented, which allows accurate estimation of kinetic parameters Vmax and KS in short-time experiments. Following the method of Optimal Experimental Design, sensitivity analysis is applied to design fed-batch experiments. The paper presents the methodology and results for the anaerobic degradation of acetic acid and discusses further implications of the experimental strategy.


2011 ◽  
Vol 64 (11) ◽  
pp. 2259-2264 ◽  
Author(s):  
C. L. Souza ◽  
C. A. L. Chernicharo ◽  
S. F. Aquino

This paper aimed at measuring the concentration of methane dissolved in effluents from different UASB reactors (pilot-, demo- and full-scale) treating domestic wastewater, in order to calculate the degree of saturation of such greenhouse gas and evaluate the losses of energetic potential in such systems. The results showed that methane saturation degrees, calculated according to Henry's law, varied from ∼1.4 to 1.7 in the different reactors, indicating that methane was oversaturated in the liquid phase. The overall results indicated that the losses of dissolved methane in the anaerobic effluents were considerably high, varying from 36 to 41% of total methane generated in the reactor. These results show that there is considerable uncontrolled loss of methane in anaerobic wastewater treatment plants, implying the need of research on technologies aimed at recovering such energetic greenhouse gas.


Sign in / Sign up

Export Citation Format

Share Document