An integrated system to remote monitor and control anaerobic wastewater treatment plants through the internet

2005 ◽  
Vol 52 (1-2) ◽  
pp. 457-464 ◽  
Author(s):  
O. Bernard ◽  
B. Chachuat ◽  
A. Hélias ◽  
B. Le Dantec ◽  
B. Sialve ◽  
...  

The TELEMAC project brings new methodologies from the Information and Science Technologies field to the world of water treatment. TELEMAC offers an advanced remote management system which adapts to most of the anaerobic wastewater treatment plants that do not benefit from a local expert in wastewater treatment. The TELEMAC system takes advantage of new sensors to better monitor the process dynamics and to run automatic controllers that stabilise the treatment plant, meet the depollution requirements and provide a biogas quality suitable for cogeneration. If the automatic system detects a failure which cannot be solved automatically or locally by a technician, then an expert from the TELEMAC Control Centre is contacted via the internet and manages the problem.

2009 ◽  
Vol 60 (9) ◽  
pp. 2439-2445 ◽  
Author(s):  
A. Lynggaard-Jensen ◽  
P. Andreasen ◽  
F. Husum ◽  
M. Nygaard ◽  
J. Kaltoft ◽  
...  

Most wastewater treatment plants have several secondary clarifiers or even more sets of clarifiers including several secondary clarifiers, and in practice it is a well known problem that equal distribution of the load to the single clarifier (or set of clarifiers) is very difficult—not to say impossible—to obtain. If the problem is neglected, quite a big percentage of the total clarifier capacity—measured as the max. allowed hydraulic load—can be lost. Further, return sludge rates are seldom controlled by any other means than as a (typically too high) percentage of the inlet to the wastewater treatment plant—giving a varying and too low suspended solids concentration in the return sludge, which again can lead to an unnecessary use of polymer in the pre-dewatering of the surplus sludge taken from the return sludge. A control of the return sludge rate divided into two parts - control of the total return sludge flow and control of how the total flow shall be distributed between the secondary clarifiers - is able to solve the mentioned problems. Finally, as shall be demonstrated on full scale wastewater treatment plants, a considerable increase of the hydraulic capacity of the treatment plants can be obtained.


2014 ◽  
Vol 69 (7) ◽  
pp. 1359-1372 ◽  
Author(s):  
Oskar Modin ◽  
David J. I. Gustavsson

Microbial bioelectrochemical systems (BESs) utilize living microorganisms to drive oxidation and reduction reactions at solid electrodes. BESs could potentially be used at municipal wastewater treatment plants (WWTPs) to recover the energy content of organic matter, to produce chemicals useful at the site, or to monitor and control biological treatment processes. In this paper, we review bioelectrochemical technologies that could be applied for municipal wastewater treatment. Sjölunda WWTP in Malmö, Sweden, is used as an example to illustrate how the different technologies potentially could be integrated into an existing treatment plant and the impact they could have on the plant's utilization of energy and chemicals.


2001 ◽  
Vol 43 (3) ◽  
pp. 85-91 ◽  
Author(s):  
B. Wett ◽  
K. Ingerie

The Biocos strategy as a cyclical time controlled activated sludge system shows a great variability in operation and control. One topic such a type of treatment plant has to deal with is the optimum relation between aerobic and anoxic conditions. The aeration control has to adapt the length of the nitrification phases to the current constraints in order to save operational costs and maximise nitrogen elimination. Since wastewater treatment plants up to a certain size are usually not equipped with on-line nitrogen probes, influent flow and temperature can be taken as control parameters for the aeration system. The defined relation between influent flow and ammonia load is based on measurements and the relation between ammonia load and required aeration time is model based.


2004 ◽  
Vol 50 (3) ◽  
pp. 29-37 ◽  
Author(s):  
E. Fourest ◽  
D. Craperi ◽  
C. Deschamps-Roupert ◽  
J.-L. Pisicchio ◽  
G. Lenon

The occurrence of filamentous bacteria was investigated in 15 French pulp and paper activated sludge wastewater treatment plant (WWTP). Large filamentous populations were present in most of the plants. Identification carried out with conventional methods based on morphological features and staining techniques showed that the four main filamentous bacteria encountered in these industrial WWTP and responsible for bulking belong to the genera Thiothrix sp., Type 021N, Haliscomenobacter hydrossis and Type 0092. During two years a specific survey was performed for three of these WWTP showing recurrent bulking phenomena. Data from WWTP performance, chemical data and filaments characterization were compared to correlate the presence of specific filaments with process operating conditions.


2020 ◽  
Vol 15 (2) ◽  
pp. 142-151
Author(s):  
Peter Lukac ◽  
Lubos Jurik

Abstract:Phosphorus is a major substance that is needed especially for agricultural production or for the industry. At the same time it is an important component of wastewater. At present, the waste management priority is recycling and this requirement is also transferred to wastewater treatment plants. Substances in wastewater can be recovered and utilized. In Europe (in Germany and Austria already legally binding), access to phosphorus-containing sewage treatment is changing. This paper dealt with the issue of phosphorus on the sewage treatment plant in Nitra. There are several industrial areas in Nitra where record major producers in phosphorus production in sewage. The new wastewater treatment plant is built as a mechanicalbiological wastewater treatment plant with simultaneous nitrification and denitrification, sludge regeneration, an anaerobic zone for biological phosphorus removal at the beginning of the process and chemical phosphorus precipitation. The sludge management is anaerobic sludge stabilization with heating and mechanical dewatering of stabilized sludge and gas management. The aim of the work was to document the phosphorus balance in all parts of the wastewater treatment plant - from the inflow of raw water to the outflow of purified water and the production of excess sludge. Balancing quantities in the wastewater treatment plant treatment processes provide information where efficient phosphorus recovery could be possible. The mean daily value of P tot is approximately 122.3 kg/day of these two sources. The mean daily value of P tot is approximately 122.3 kg/day of these two sources. There are also two outflows - drainage of cleaned water to the recipient - the river Nitra - 9.9 kg Ptot/day and Ptot content in sewage sludge - about 120.3 kg Ptot/day - total 130.2 kg Ptot/day.


2008 ◽  
Vol 3 (1) ◽  
Author(s):  
Luchien Luning ◽  
Paul Roeleveld ◽  
Victor W.M. Claessen

In recent years new technologies have been developed to improve the biological degradation of sewage sludge by anaerobic digestion. The paper describes the results of a demonstration of ultrasonic disintegration on the Dutch Wastewater Treatment Plant (WWTP) Land van Cuijk. The effect on the degradation of organic matter is presented, together with the effect on the dewatering characteristics. Recommendations are presented for establishing research conditions in which the effect of sludge disintegration can be determined in a more direct way that is less sensitive to changing conditions in the operation of the WWTP. These recommendations have been implemented in the ongoing research in the Netherlands supported by the National Institute for wastewater research (STOWA).


1993 ◽  
Vol 28 (10) ◽  
pp. 1-8 ◽  
Author(s):  
A. Gaber ◽  
M. Antill ◽  
W. Kimball ◽  
R. Abdel Wahab

The implementation of urban village wastewater treatment plants in developing countries has historically been primarily a function of appropriate technology choice and deciding which of the many needy communities should receive the available funding and priority attention. Usually this process is driven by an outside funding agency who views the planning, design, and construction steps as relatively insignificant milestones in the overall effort required to quickly better a community's sanitary drainage problems. With the exception of very small scale type sanitation projects which have relatively simple replication steps, the development emphasis tends to be on the final treatment plant product with little or no attention specifically focused on community participation and institutionalizing national and local policies and procedures needed for future locally sponsored facilities replication. In contrast to this, the Government of Egypt (GOE) enacted a fresh approach through a Local Development Program with the United States AID program. An overview is presented of the guiding principals of the program which produced the first 24 working wastewater systems including gravity sewers, sewage pumping stations and wastewater treatment plants which were designed and constructed by local entities in Egypt. The wastewater projects cover five different treatment technologies implemented in both delta and desert regions.


2021 ◽  
Vol 13 (9) ◽  
pp. 1757
Author(s):  
Javier Burgués ◽  
María Deseada Esclapez ◽  
Silvia Doñate ◽  
Laura Pastor ◽  
Santiago Marco

Wastewater treatment plants (WWTPs) are sources of greenhouse gases, hazardous air pollutants and offensive odors. These emissions can have negative repercussions in and around the plant, degrading the quality of life of surrounding neighborhoods, damaging the environment, and reducing employee’s overall job satisfaction. Current monitoring methodologies based on fixed gas detectors and sporadic olfactometric measurements (human panels) do not allow for an accurate spatial representation of such emissions. In this paper we use a small drone equipped with an array of electrochemical and metal oxide (MOX) sensors for mapping odorous gases in a mid-sized WWTP. An innovative sampling system based on two (10 m long) flexible tubes hanging from the drone allowed near-source sampling from a safe distance with negligible influence from the downwash of the drone’s propellers. The proposed platform is very convenient for monitoring hard-to-reach emission sources, such as the plant’s deodorization chimney, which turned out to be responsible for the strongest odor emissions. The geo-localized measurements visualized in the form of a two-dimensional (2D) gas concentration map revealed the main emission hotspots where abatement solutions were needed. A principal component analysis (PCA) of the multivariate sensor signals suggests that the proposed system can also be used to trace which emission source is responsible for a certain measurement.


Author(s):  
Tamara Mainetti ◽  
Marilena Palmisano ◽  
Fabio Rezzonico ◽  
Blaž Stres ◽  
Susanne Kern ◽  
...  

AbstractConjugated estrogens, such as 17β-estradiol-3-sulfate (E2-3S), can be released into aquatic environments through wastewater treatment plants (WWTP). There, they are microbiologically degraded into free estrogens, which can have harmful effects on aquatic wildlife. Here, the degradation of E2-3S in environmental samples taken upstream, downstream and at the effluent of a WWTP was assessed. Sediment and biofilm samples were enriched for E2-3S-degrading microorganisms, yielding a broad diversity of bacterial isolates, including known and novel degraders of estrogens. Since E2-3S-degrading bacteria were also isolated in the sample upstream of the WWTP, the WWTP does not influence the ability of the microbial community to degrade E2-3S.


2006 ◽  
Vol 54 (10) ◽  
pp. 39-45
Author(s):  
A. Vargas ◽  
D. González ◽  
A. Estival ◽  
G. Buitrón

This work presents a comparison of two inocula used for the acclimation of two anaerobic-aerobic sequencing batch bioreactors used for toxic wastewater treatment. The bioreactors were acclimated with different types of sludge: one coming from an anaerobic wastewater treatment plant and the other one from a conventional aerobic activated sludge plant. The model toxic compound was p-nitrophenol, which is reduced to p-aminophenol during the initial anaerobic phase of the reaction, and later mineralized during a posterior aerated reaction phase. Biodegradation of the compounds was monitored using UV/Vis spectrophotometry. After acclimation stabilization of the sludge and of the process was also monitored. Results show that there is no significant difference in acclimation times and stability of the process between the two employed inocula, and thus an originally anaerobic inoculum presents no apparent advantage over a more easily accessible aerobic one.


Sign in / Sign up

Export Citation Format

Share Document