Recycled/Waste Plastic

Author(s):  
Rafat Siddique
Keyword(s):  
2018 ◽  
Vol 10 (11) ◽  
pp. 3875 ◽  
Author(s):  
Adewumi Babafemi ◽  
Branko Šavija ◽  
Suvash Paul ◽  
Vivi Anggraini

The abundance of waste plastic is a major issue for the sustainability of the environment as plastic pollutes rivers, land, and oceans. However, the versatile behavior of plastic (it is lightweight, flexible, strong, moisture-resistant, and cheap) can make it a replacement for or alternative to many existing composite materials like concrete. Over the past few decades, many researchers have used waste plastic as a replacement for aggregates in concrete. This paper presents a comprehensive review of the engineering properties of waste recycled plastic. It is divided into three sections, along with an introduction and conclusion. The influence of recycled waste plastics on the fresh properties of concrete is discussed first, followed by its influence on the mechanical and durability properties of concrete. Current experimental results have shown that the mechanical and durability properties of concrete are altered due to the inclusion of plastic. However, such concrete still fulfills the requirements of many engineering applications. This review also advocates further study of possible pre-treatment of waste plastic properties for the modification of its surface, shape, and size in order to improve the quality of the composite product and make its use more widespread.


10.17158/516 ◽  
2016 ◽  
Vol 19 (2) ◽  
Author(s):  
Ruben M. Ruiz ◽  
Renan P. Limjuco ◽  
Ebony Joseph B. Dolino ◽  
Michelle T. Llaban ◽  
Jeric N. Maratas ◽  
...  

<p>The necessity of improving the engineering properties of soil has been recognized; therefore, it is very important to find ways to enhance the weak soil, and using plastic waste is one promising way of doing it. The primary objective of this study is to compare the bearing capacity of the two types of soil (Clay and Item-201) in different concentrations of plastics, namely, at 0%, 0.5%, and 1%. Primarily, this investigation aimed to compare the California bearing ratio (CBR) of the two types of soil each with three concentrations of plastic. This study made use of the experimental design, specifically posttest design only to determine the effectiveness of using recycled waste plastic as soil bearing capacity enhancer. Findings revealed that in terms of the type of soil, there is a significant difference in California bearing ratio between clay and Item 201 (p-value &lt; 0.05). On the other hand, the California bearing ratio of the soil samples in various concentrations are not the same. As with the interaction between the type of soil and the waste plastic, a two-way ANOVA reveals that there is significant interaction between them that might have influenced California bearing ratio in the soil (p-value &lt; 0.05).</p><p> </p><p><strong>Keywords:</strong> Engineering, soil, waste plastic, soil bearing capacity enhancer, California bearing ratio, experimental, ANOVA, Davao City, Philippines.</p>


2018 ◽  
Vol 65 ◽  
pp. 05027 ◽  
Author(s):  
Aliyu Usman ◽  
Muslich Hartadi Sutanto ◽  
Madzlan Napiah

The utilization of a large amount of waste in concrete production is considered the best alternative for solving the issues associated with improper disposal. Plastic waste is considered as one of such waste and could be utilized in several applications. The drawback associated with the utilization of a large amount of plastic waste is the decrease in the mechanical properties of the mortar or concrete as the case may be. This paper presents a detailed review about waste recycled plastics and research published on the effect of non-irradiated recycled plastic on the mechanical properties of cement mortar and cement concretes as either fillers or aggregates and the application of gamma radiation on the recycled plastic waste. The effect of recycled waste plastic on compressive strength, flexural strength and splitting tensile strength is discussed in this paper.


2018 ◽  
Vol 983 ◽  
pp. 012007
Author(s):  
M P Aji ◽  
I Rahmawati ◽  
A Priyanto ◽  
J Karunawan ◽  
A L Wati ◽  
...  

Author(s):  
Xianglin

Utilization of waste plastic as a aggregate in bituminous mix results in weak bonding between the plastic and bitumen. This study reports on the feasibility of using plastic waste and chemical additives to improvise the performance and mechanical properties of bituminous mixtures. The selected recycled waste plastics were used as partial aggregate replacement in bituminous mix product. Strong oxidizing mixture of dichromate and sulphuric acid was used to treat the plastic, while the bitumen was treated with a cross linking agent, polyethylene mine. Three modified bituminous mixtures were prepared and the stiffness results were compared with the control bituminous mixture. It was observed that the stiffness increased by 10% for the chemically modified bituminous mixtures. This improvement is attributed to an increase in the bonding forces between the aggregates and the bitumen. Besides, a mechanism is proposed in order to explain the effect of the chemical additives on the increase in the stiffness of the bituminous mixture.


Sign in / Sign up

Export Citation Format

Share Document