Evolutionary Algorithm for Feature Subset Selection in Predicting Tumor Outcomes Using Microarray Data

Author(s):  
Qihua Tan ◽  
Mads Thomassen ◽  
Kirsten M. Jochumsen ◽  
Jing Hua Zhao ◽  
Kaare Christensen ◽  
...  
Proceedings ◽  
2021 ◽  
Vol 74 (1) ◽  
pp. 21
Author(s):  
Hülya Başeğmez ◽  
Emrah Sezer ◽  
Çiğdem Selçukcan Erol

Recently, gene selection has played an important role in cancer diagnosis and classification. In this study, it was studied to select high descriptive genes for use in cancer diagnosis in order to develop a classification analysis for cancer diagnosis using microarray data. For this purpose, comparative analysis and intersections of six different methods obtained by using two feature selection algorithms and three search algorithms are presented. As a result of the six different feature subset selection methods applied, it was seen that instead of 15,155 genes, 24 genes should be focused. In this case, cancer diagnosis may be possible using 24 candidate genes that have been reduced, rather than similar studies involving larger features. However, in order to see the diagnostic success of diagnoses made using these candidate genes, they should be examined in a wet laboratory.


2021 ◽  
Vol 6 (3) ◽  
pp. 177
Author(s):  
Muhamad Arief Hidayat

In health science there is a technique to determine the level of risk of pregnancy, namely the Poedji Rochyati score technique. In this evaluation technique, the level of pregnancy risk is calculated from the values ​​of 22 parameters obtained from pregnant women. Under certain conditions, some parameter values ​​are unknown. This causes the level of risk of pregnancy can not be calculated. For that we need a way to predict pregnancy risk status in cases of incomplete attribute values. There are several studies that try to overcome this problem. The research "classification of pregnancy risk using cost sensitive learning" [3] applies cost sensitive learning to the process of classifying the level of pregnancy risk. In this study, the best classification accuracy achieved was 73% and the best value was 77.9%. To increase the accuracy and recall of predicting pregnancy risk status, in this study several improvements were proposed. 1) Using ensemble learning based on classification tree 2) using the SVMattributeEvaluator evaluator to optimize the feature subset selection stage. In the trials conducted using the classification tree-based ensemble learning method and the SVMattributeEvaluator at the feature subset selection stage, the best value for accuracy was up to 76% and the best value for recall was up to 89.5%


Sign in / Sign up

Export Citation Format

Share Document