Counting Complexity of Minimal Cardinality and Minimal Weight Abduction

Author(s):  
Miki Hermann ◽  
Reinhard Pichler
1991 ◽  
Vol 23 (2) ◽  
pp. 247???253 ◽  
Author(s):  
ROBERT A. OPPLIGER ◽  
DAVID H. NIELSEN ◽  
CAROL G. VANCE
Keyword(s):  

Author(s):  
O.V. Tatarnikov ◽  
W.A. Phyo ◽  
Lin Aung Naing

This paper describes a method for optimizing the design of a spar-type composite aircraft wing structure based on multi-criterion approach. Two types of composite wing structures such as two-spar and three-spar ones were considered. The optimal design of a wing frame was determined by the Pareto method basing on three criteria: minimal weight, minimal wing deflection, maximal safety factor and minimal weight. Positions of wing frame parts, i.e. spars and ribs, were considered as optimization parameters. As a result, an optimal design of a composite spar-type wing was proposed. All the calculations necessary to select the optimal structural and design of the spar composite wing were performed using nonlinear static finite element analysis in the FEMAP with NX Nastran software package.


1968 ◽  
Vol 11 (1) ◽  
pp. 19-21 ◽  
Author(s):  
Isidore Fleischer

The definition of injectivity, and the proof that every module has an injective extension which is a subextension of every other injective extension, are due to R. Baer [B]. An independent proof using the notion of essential extension was given by Eckmann-Schopf [ES]. Both proofs require the p reliminary construction of some injective overmodule. In [F] I showed how the latter proof could be freed from this requirement by exhibiting a set F in which every essential extension could be embedded. Subsequently J. M. Maranda pointed out that F has minimal cardinality. It follows that F is equipotent with the injective hull. Below Icon struct the injective hull by equipping Fit self with a module strucure.


2020 ◽  
Vol 16 (05) ◽  
pp. 1111-1152
Author(s):  
Cameron Franc ◽  
Geoffrey Mason

This paper studies modular forms of rank four and level one. There are two possibilities for the isomorphism type of the space of modular forms that can arise from an irreducible representation of the modular group of rank four, and we describe when each case occurs for general choices of exponents for the [Formula: see text]-matrix. In the remaining sections we describe how to write down the corresponding differential equations satisfied by minimal weight forms, and how to use these minimal weight forms to describe the entire graded module of holomorphic modular forms. Unfortunately, the differential equations that arise can only be solved recursively in general. We conclude the paper by studying the cases of tensor products of two-dimensional representations, symmetric cubes of two-dimensional representations, and inductions of two-dimensional representations of the subgroup of the modular group of index two. In these cases, the differential equations satisfied by minimal weight forms can be solved exactly.


10.37236/969 ◽  
2007 ◽  
Vol 14 (1) ◽  
Author(s):  
Wolfgang Haas ◽  
Jörn Quistorff

Let $R$, $S$ and $T$ be finite sets with $|R|=r$, $|S|=s$ and $|T|=t$. A code $C\subset R\times S\times T$ with covering radius $1$ and minimum distance $2$ is closely connected to a certain generalized partial Latin rectangle. We present various constructions of such codes and some lower bounds on their minimal cardinality $K(r,s,t;2)$. These bounds turn out to be best possible in many instances. Focussing on the special case $t=s$ we determine $K(r,s,s;2)$ when $r$ divides $s$, when $r=s-1$, when $s$ is large, relative to $r$, when $r$ is large, relative to $s$, as well as $K(3r,2r,2r;2)$. Some open problems are posed. Finally, a table with bounds on $K(r,s,s;2)$ is given.


10.37236/945 ◽  
2007 ◽  
Vol 14 (1) ◽  
Author(s):  
Wolfgang Haas

Let $k_3(n)$ denote the minimal cardinality of a ternary code of length $n$ and covering radius one. In this paper we show $k_3(7)\ge 156$ and $k_3(8)\ge 402$ improving on the best previously known bounds $k_3(7)\ge 153$ and $k_3(8)\ge 398$. The proofs are founded on a recent technique of the author for dealing with systems of linear inequalities satisfied by the number of elements of a covering code, that lie in $k$-dimensional subspaces of F${}_3^n$.


10.37236/582 ◽  
2011 ◽  
Vol 18 (1) ◽  
Author(s):  
Victor Falgas-Ravry

Let $\Omega$ be a finite set and let $\mathcal{S} \subseteq \mathcal{P}(\Omega)$ be a set system on $\Omega$. For $x\in \Omega$, we denote by $d_{\mathcal{S}}(x)$ the number of members of $\mathcal{S}$ containing $x$. A long-standing conjecture of Frankl states that if $\mathcal{S}$ is union-closed then there is some $x\in \Omega$ with $d_{\mathcal{S}}(x)\geq \frac{1}{2}|\mathcal{S}|$. We consider a related question. Define the weight of a family $\mathcal{S}$ to be $w(\mathcal{S}) := \sum_{A \in \mathcal{S}} |A|$. Suppose $\mathcal{S}$ is union-closed. How small can $w(\mathcal{S})$ be? Reimer showed $$w(\mathcal{S}) \geq \frac{1}{2} |\mathcal{S}| \log_2 |\mathcal{S}|,$$ and that this inequality is tight. In this paper we show how Reimer's bound may be improved if we have some additional information about the domain $\Omega$ of $\mathcal{S}$: if $\mathcal{S}$ separates the points of its domain, then $$w(\mathcal{S})\geq \binom{|\Omega|}{2}.$$ This is stronger than Reimer's Theorem when $\vert \Omega \vert > \sqrt{|\mathcal{S}|\log_2 |\mathcal{S}|}$. In addition we construct a family of examples showing the combined bound on $w(\mathcal{S})$ is tight except in the region $|\Omega|=\Theta (\sqrt{|\mathcal{S}|\log_2 |\mathcal{S}|})$, where it may be off by a multiplicative factor of $2$. Our proof also gives a lower bound on the average degree: if $\mathcal{S}$ is a point-separating union-closed family on $\Omega$, then $$ \frac{1}{|\Omega|} \sum_{x \in \Omega} d_{\mathcal{S}}(x) \geq \frac{1}{2} \sqrt{|\mathcal{S}| \log_2 |\mathcal{S}|}+ O(1),$$ and this is best possible except for a multiplicative factor of $2$.


Sign in / Sign up

Export Citation Format

Share Document