Effects of Temperature on the Performance of Footwear Foams Subjected to Quasi-Static Compression Loading

Author(s):  
M. R. Shariatmadari ◽  
R. English ◽  
G. Rothwell
2013 ◽  
Vol 393 ◽  
pp. 460-466 ◽  
Author(s):  
Wan Luqman Hakim Wan Abdul Hamid ◽  
Yulfian Aminanda ◽  
Mohamed Shaik Dawood

The effect of low density filler material comprising polyurethane foam on the axial crushing resistance of Nomex honeycomb under quasi-static compression conditions was analyzed. Honeycombs with two different densities, two different heights and similar cell size, along with five different densities of polyurethane foams were used in the research. A total of 14 unfilled Nomex honeycombs, 15 polyurethane foams, and 39 foam-filled Nomex honeycombs were subjected to quasi-static compression loading. The crushing load and capability of foam-filled Nomex honeycomb structure in absorbing the energy were found to increase significantly since the cell walls of honeycomb were strengthened by the foam filler; the walls did not buckle at the very beginning of compression loading. The failure mechanism of the foam-filled honeycomb was analyzed and compared with the unfilled honeycomb.


2020 ◽  
Vol 14 (4) ◽  
pp. 7348-7360
Author(s):  
Quanjin Ma ◽  
Tengfei Kuai ◽  
M.R.M Rejab ◽  
Nallapaneni Manoj Kumar ◽  
M.S Idris ◽  
...  

This paper is aimed to investigate the crushing response of single square honeycomb panels under quasi-static compression loading. Two types of materials are used in this study, which refers to 100 % polylactic acid (PLA) and 70 % PLA filled 30 % carbon fibre (PLA/CF). Single honeycomb panels were fabricated through additive manufacturing technique, and assembled using slotting technique. The effect of boundary factor on the single square honeycomb panels have been studied, which refers to none, single-side, double-side boundary conditions. The effect of material properties on the crushing response has also involved. For the tensile test, it was concluded that the PLA/CF specimen offered the higher young modulus with 428.75 MPa than 360.76 MPa of PLA specimen. For the quasi-static compression test, the compressive modulus and strength of the single honeycomb sandwich panel showed 489.69 MPa and 18.32 MPa with boundary type 1, which provided the highest value compared to other two boundary condition types. Moreover, the square honeycomb sandwich panels with PLA/CF material and type 3 boundary condition offered the better crushing performance on energy absorption (EA) with 66.42 kJ and specific energy absorption (SEA) with 2282.47 kJ/kg. In addition, the crushing behaviour and failure mode were also involved and discussed in this study.


Sign in / Sign up

Export Citation Format

Share Document