Effect of boundary factor and material property on single square honeycomb sandwich panel subjected to quasi-static compression loading

2020 ◽  
Vol 14 (4) ◽  
pp. 7348-7360
Author(s):  
Quanjin Ma ◽  
Tengfei Kuai ◽  
M.R.M Rejab ◽  
Nallapaneni Manoj Kumar ◽  
M.S Idris ◽  
...  

This paper is aimed to investigate the crushing response of single square honeycomb panels under quasi-static compression loading. Two types of materials are used in this study, which refers to 100 % polylactic acid (PLA) and 70 % PLA filled 30 % carbon fibre (PLA/CF). Single honeycomb panels were fabricated through additive manufacturing technique, and assembled using slotting technique. The effect of boundary factor on the single square honeycomb panels have been studied, which refers to none, single-side, double-side boundary conditions. The effect of material properties on the crushing response has also involved. For the tensile test, it was concluded that the PLA/CF specimen offered the higher young modulus with 428.75 MPa than 360.76 MPa of PLA specimen. For the quasi-static compression test, the compressive modulus and strength of the single honeycomb sandwich panel showed 489.69 MPa and 18.32 MPa with boundary type 1, which provided the highest value compared to other two boundary condition types. Moreover, the square honeycomb sandwich panels with PLA/CF material and type 3 boundary condition offered the better crushing performance on energy absorption (EA) with 66.42 kJ and specific energy absorption (SEA) with 2282.47 kJ/kg. In addition, the crushing behaviour and failure mode were also involved and discussed in this study.

2018 ◽  
Vol 2018 ◽  
pp. 1-6 ◽  
Author(s):  
Dongmei Wang ◽  
Ziyou Bai ◽  
Qianghua Liao

Paper honeycomb sandwich panel is an environment-sensitive material. Its cushioning property is closely related to its structural factors, the temperature and humidity, random shocks, and vibration events in the logistics environment. In order to visually characterize the cushioning property of paper honeycomb sandwich panel in different logistics conditions, the energy absorption equation of per unit volume of paper honeycomb sandwich panel was constructed by piecewise function. The three-dimensional (3D) energy absorption diagram of paper honeycomb sandwich panel was constructed by connecting the inflexion of energy absorption curve. It takes into account the temperature, humidity, strain rate, and characteristics of the honeycomb structure. On the one hand, this diagram breaks through the limitation of the static compression curve of paper honeycomb sandwich panel, which depends on the test specimen and is applicable only to the standard condition. On the other hand, it breaks through the limitation of the conventional 2D energy absorption diagram which has less information. Elastic modulus was used to normalize the plateau stress and energy absorption per unit volume. This makes the 3D energy absorption diagram universal for different material sandwich panels. It provides a new theoretical basis for packaging optimized design.


Author(s):  
Huineng Wang ◽  
Yanfeng Guo ◽  
Yungang Fu ◽  
Dan Li

This study introduces the opinion of the corrugation hierarchy to develop the second-order corrugation paperboard, and explore the deformation characteristics, yield strength, and energy absorbing capacity under out-of-plane static evenly compression loading by experimental and analytical approaches. On the basis of the inclined-straight strut elements of corrugation unit and plastic hinge lines, the yield and crushing strengths of corrugation unit were analyzed. This study shows that as the compressive stress increases, the second-order corrugation core layer is firstly crushed, and the first-order corrugation structures gradually compacted until the failure of entire structure. The corrugation type has an obvious influence on the yield strength of the corrugation sandwich panel, and the yield strength of B-flute corrugation sandwich panel is wholly higher than that of the C-flute structure. At the same compression rate, the flute type has a significant impact on energy absorption, and the C-flute second-order corrugation sandwich panel has better bearing capacity than the B-flute structure. The second-order corrugation sandwich panel has a better bearing capacity than the first-order structure. The static compression rate has little effect on the yield strength and deformation mode. However, with the increase of the static compression rate, the corrugation sandwich panel has a better cushioning energy absorption and material utilization rate.


Author(s):  
Haolei Mou ◽  
Zhenyu Feng ◽  
Jiang Xie ◽  
Jun Zou ◽  
Kun Zhou

AbstractTo analysis the failure and energy absorption of carbon fiber reinforced polymer (CFRP) thin-walled square tube, the quasi-static axial compression loading tests are conducted for [±45]3s square tube, and the square tube after test is scanned to further investigate the failure mechanism. Three different finite element models, i.e. single-layer shell model, multi-layer shell model and stacked shell mode, are developed by using the Puck 2000 matrix failure criterion and Yamada Sun fiber failure criterion, and three models are verified and compared according to the experimental energy absorption metrics. The experimental and simulation results show that the failure mode of [±45]3s square tube is the local buckling failure mode, and the energy are absorbed mainly by intralaminar and interlaminar delamination, fiber elastic deformation, fiber debonding and fracture, matrix deformation cracking and longitudinal crack propagation. Three different finite element models can reproduce the collapse behaviours of [±45]3s square tube to some extent, but the stacked shell model can better reproduce the failure mode, and the difference of specific energy absorption (SEA) is minimum, which shows the numerical simulation results are in better agreement with the test results.


2020 ◽  
Vol 20 (2) ◽  
pp. 101-109 ◽  
Author(s):  
Andrews Boakye ◽  
Rafui King Raji ◽  
Pibo Ma ◽  
Honglian Cong

AbstractThis research investigates the compressive property of a novel composite based on a weft-knitted auxetic tube subjected to a quasi-static compression test. In order to maximize the influence of the fiber content on the compression test, a Kevlar yarn was used in knitting the tubular samples using three different auxetic arrow-head structures (i.e. 4 × 4, 6 × 6 and 8 × 8 structure). A quasi-static compression test was conducted under two different impact loading speeds (i.e. 5 mm/min and 15 mm/min loading speed). The results indicate that the energy absorption (EA) property of the auxetic composite is highly influenced by the auxeticity of the knitted tubular fabric.


Metals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1579 ◽  
Author(s):  
Yang Yu ◽  
Zhuokun Cao ◽  
Ganfeng Tu ◽  
Yongliang Mu

The energy absorption of different cell structures for closed-cell aluminum foam-filled Al tubes are investigated through quasi-static compression testing. Aluminum foams are fabricated under different pressures, obtaining aluminum foams with different cell sizes. It is found that the deformation of the foam core is close to the overall deformation, and the deformation band is seriously expanded when the cell size is fined, which leads to the increase of interaction. Results confirm that the foam-filled tubes absorb more energy due to the increase of interaction between the foam core and tube wall when the foaming pressure increases. The energy absorption efficiency of foam-filled tubes can reach a maximum value of 90% when the foam core is fabricated under 0.30 MPa, which demonstrates that aluminum foams fabricated under increased pressure give a new way for the applications of foam-filled tubes in the automotive industry.


Sign in / Sign up

Export Citation Format

Share Document