Simulation of Drug Release for the Development of Drug-Eluting Stents - Influence of Design and Manufacturing Parameters on Drug Release Kinetics

Author(s):  
N. Grabow ◽  
S. Siewert ◽  
K. Sternberg ◽  
H. Martin ◽  
K. -P. Schmitz
2015 ◽  
Vol 10 (1) ◽  
Author(s):  
Megan Livingston ◽  
Aaron Tan

Implantation of drug-eluting stents (DESs) via percutaneous coronary intervention is the most popular treatment option to restore blood flow to occluded vasculature. The many devices currently used in clinic and under examination in research laboratories are manufactured using a variety of coating techniques to create the incorporated drug release platforms. These coating techniques offer various benefits including ease of use, expense of equipment, and design variability. This review paper discusses recent novel DES designs utilizing individual or a combination of these coating techniques and their resulting drug release profiles.


2017 ◽  
Vol 191 ◽  
pp. 116-118 ◽  
Author(s):  
Edoardo Ceci-Ginistrelli ◽  
Carlotta Pontremoli ◽  
Diego Pugliese ◽  
Nadia Barbero ◽  
Nadia G. Boetti ◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1165
Author(s):  
Zhanna K. Nazarkina ◽  
Boris P. Chelobanov ◽  
Konstantin A. Kuznetsov ◽  
Alexey V. Shutov ◽  
Irina V. Romanova ◽  
...  

It was previously shown that polycaprolactone (PCL)-based electrospun-produced paclitaxel (PTX)-enriched matrices exhibit long-term drug release kinetics and can be used as coatings for drug-eluting stents (DES). The installation of vascular stents involves a twofold increase in stent diameter and, therefore, an elongation of the matrices covering the stents, as well as the arterial wall in a stented area. We studied the influence of matrix elongation on its structure and PTX release using three different electrospun-produced matrices. The data obtained demonstrate that matrix elongation during stent installation does not lead to fiber breaks and does not interfere with the kinetics of PTX release. To study PTX diffusion through the expanded artery wall, stents coated with 5%PCL/10%HSA/3%DMSO/PTX and containing tritium-labeled PTX were installed into the freshly obtained iliac artery of a rabbit. The PTX passing through the artery wall was quantified using a scintillator β-counter. The artery retained the PTX and decreased its release from the coating. The retention of PTX by the arterial wall was more efficient when incubated in blood plasma in comparison with PBS. The retention/accumulation of PTX by the arterial wall provides a prolonged drug release and allows for the reduction in the dose of the drugs in electrospun-produced stent coatings.


2011 ◽  
Vol 78 (1) ◽  
pp. 36-48 ◽  
Author(s):  
Anne Seidlitz ◽  
Stefan Nagel ◽  
Beatrice Semmling ◽  
Niels Grabow ◽  
Heiner Martin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document