A Statistical Study on Stress-Strain Relation of AISI 304 Stainless Steel Under Elevated Temperatures

Author(s):  
S.H. Park ◽  
J.K. Kim ◽  
J.H. Kim
2010 ◽  
Vol 638-642 ◽  
pp. 3170-3175
Author(s):  
Elaine Carballo Siqueira Corrêa ◽  
Maria Teresa Paulino Aguilar ◽  
Paulo Roberto Cetlin

One of the most significant aspects of the axisymmetric drawing operation is the occurrence of non-homogeneous deformation in the cross section of the metal. This phenomenon is associated with an internal distortion process that takes place in the bar as it flows through the die, leading to the development of higher drawing forces and affecting the subsequent mechanical behavior of the material. An adequate analysis of the process and of the work hardening of the drawn metal, therefore, must involve a detailed study of the deformation features in the forming operation. In the present work, the deformation in the single-pass drawing of AISI 304 stainless steel bars was investigated through the evaluation of the relationship between the redundant deformation factor and the parameter . Two experimetal procedures were employed in the study: the visioplasticity and the stress-strain curves superposition techniques. The first one, previously considered as the method leading to the most realistic solutions to various forming processes, allowed the establishment of an increasing linear relationship between de redundant deformation factor and the parameter . A similar behavior was observed through the stress-strain curves superposition technique. In this case, however, the redundant deformation factor values were lower or higher than those obtained through visioplasticity according to the drawing conditions and more sensitive to variations of the parameter . The results were compared to those exhibited by the AISI 420 stainless steel, revealing the influence of the structural features on the behavior of the metal.


2012 ◽  
Vol 730-732 ◽  
pp. 691-696
Author(s):  
Abdella Kenzu

Presented in this paper is an explicit full-range stress-strain relation for stainlesssteel alloys applicable at normal and elevated temperatures. The relation utilizes an approxima-tion of the closed form inversion of a highly accurate three-stage stress-strain relation recentlyobtained from the Ramberg-Osgood equation. The three stage inversion is formulated using anappropriate rational function assumption to approximate the fractional deviation of the actualstress-strain relation from an idealized linear elastic behaviour. The temperature dependenceon the stress-strain relation is then introduced by modifying the basic mechanical propertiesof stainless steel to account for the temperature e ects. The proposed approximate inversionis applicable over the full-range of the stress well beyond the elastic region up to the ultimatestress. Moreover, the inversion can be applied to both tensile and compressive stresses. Theproposed approximate inversion is tested over a wide range of material parameters as well as awide range of temperatures. It is shown that the new expression results in stress-strain curveswhich are both qualitatively and quantitatively in excellent agreement with experimental re-sults and the fully iterated numerical solution of the full-range stress-strain relation for normalas well as elevated temperatures


Wear ◽  
2014 ◽  
Vol 321 ◽  
pp. 33-37 ◽  
Author(s):  
Zhen Li ◽  
Jiesheng Han ◽  
Jinjun Lu ◽  
Jiansong Zhou ◽  
Jianmin Chen

Author(s):  
J. A. Korbonski ◽  
L. E. Murr

Comparison of recovery rates in materials deformed by a unidimensional and two dimensional strains at strain rates in excess of 104 sec.−1 was performed on AISI 304 Stainless Steel. A number of unidirectionally strained foil samples were deformed by shock waves at graduated pressure levels as described by Murr and Grace. The two dimensionally strained foil samples were obtained from radially expanded cylinders by a constant shock pressure pulse and graduated strain as described by Foitz, et al.


Sign in / Sign up

Export Citation Format

Share Document