A New Coverage Improvement Algorithm Based on Motility Capability of Directional Sensor Nodes

Author(s):  
M. Amac Guvensan ◽  
A. Gokhan Yavuz
2014 ◽  
Vol 651-653 ◽  
pp. 1882-1887
Author(s):  
Jun Zhu ◽  
Chen Shi ◽  
Shan Shan Zhu ◽  
Jun Zhang

After directional sensor nodes are randomly thrown into target area, coverage ratio often less than the anticipant value, in order to improve the coverage, sensor nodes should turn from overlapping regions to coverage holes by a much faster way. In this paper, we improved the existing potential field based coverage-enhancing algorithm (PFCEA), presented a optimization of the virtual potential field based on coverage-enhancing algorithm for directional sensor networks (OPFCEA), we introducing a new-style virtual node to enhance the coverage of boundary region and a new-style control for the rotation angle. By these ways, we can improve network’s performance. This algorithm enhanced the coverage ratio of the network, the simulation results show the effectiveness of the algorithm.


2013 ◽  
Vol 711 ◽  
pp. 440-445
Author(s):  
Xiang Fu ◽  
Chun Ping Lu ◽  
Hao Li

DGreedy (distributed greedy) algorithm evaluates the priority level in view of remaining energy of terminals, and the relationships between neighbor nodes are not considered. At the same time, the adjustable sensing orientations of sensors are limited. Therefore, the network coverage ratio of DGreedy is affected usually by the processing order of sensor nodes. In this paper, an improved Greedy algorithm for the coverage in directional sensor network is proposed based on the principle of global greedy. The single coverage area of nodes is considered as priority. The direction of node with maximum single coverage area is deployed firstly. Thereby it reduces the sensing overlapping regions and accomplishes coverage enhancement of the networks. Meanwhile, in order to improve the network coverage ratio, the sensing orientations of sensors are adjustable continuously, so the best sensing orientation of node can be selected by considering the deployment of neighbor nodes. Simulation experiments show that the proposed algorithm can improve the coverage area effectively.


Author(s):  
Song Peng ◽  
◽  
Yonghua Xiong

Coverage is a crucial issue in directional sensor networks (DSNs), and a high coverage ratio ensures a good quality of service (QoS). However, a DSN encounters various problems because they use directional sensor nodes, which are characterized by directionality and a definite sensing angle. To address the area coverage problem of DSNs, this paper proposes a new sensing direction rotation approach to optimize coverage. First, we conduct grid partitioning in the target area and propose a coverage verification algorithm to justify the coverage situation of the grid points. Then, we utilize particle swarm optimization (PSO) to find an optimal sensing direction group of the directional sensor nodes to maximize the coverage ratio. Extensive simulation experiments were conducted to prove the effectiveness and reliability of our proposed approach. The results show that the approach improves the area coverage ratio of DSNs in various scenarios.


IEEE Access ◽  
2017 ◽  
Vol 5 ◽  
pp. 15490-15504 ◽  
Author(s):  
Selina Sharmin ◽  
Fernaz Narin Nur ◽  
Md. Abdur Razzaque ◽  
Md. Mustafizur Rahman ◽  
Ahmad Almogren ◽  
...  

2016 ◽  
Vol 9 (4) ◽  
pp. 2032-2050
Author(s):  
Lei Yutong ◽  
Wen jian ◽  
Zhao Xuan ◽  
Li Jianyu ◽  
Zhang Junguo

2020 ◽  
Vol 39 (6) ◽  
pp. 8139-8147
Author(s):  
Ranganathan Arun ◽  
Rangaswamy Balamurugan

In Wireless Sensor Networks (WSN) the energy of Sensor nodes is not certainly sufficient. In order to optimize the endurance of WSN, it is essential to minimize the utilization of energy. Head of group or Cluster Head (CH) is an eminent method to develop the endurance of WSN that aggregates the WSN with higher energy. CH for intra-cluster and inter-cluster communication becomes dependent. For complete, in WSN, the Energy level of CH extends its life of cluster. While evolving cluster algorithms, the complicated job is to identify the energy utilization amount of heterogeneous WSNs. Based on Chaotic Firefly Algorithm CH (CFACH) selection, the formulated work is named “Novel Distributed Entropy Energy-Efficient Clustering Algorithm”, in short, DEEEC for HWSNs. The formulated DEEEC Algorithm, which is a CH, has two main stages. In the first stage, the identification of temporary CHs along with its entropy value is found using the correlative measure of residual and original energy. Along with this, in the clustering algorithm, the rotating epoch and its entropy value must be predicted automatically by its sensor nodes. In the second stage, if any member in the cluster having larger residual energy, shall modify the temporary CHs in the direction of the deciding set. The target of the nodes with large energy has the probability to be CHs which is determined by the above two stages meant for CH selection. The MATLAB is required to simulate the DEEEC Algorithm. The simulated results of the formulated DEEEC Algorithm produce good results with respect to the energy and increased lifetime when it is correlated with the current traditional clustering protocols being used in the Heterogeneous WSNs.


Author(s):  
Yugashree Bhadane ◽  
Pooja Kadam

Now days, wireless technology is one of the center of attention for users and researchers. Wireless network is a network having large number of sensor nodes and hence called as “Wireless Sensor Network (WSN)”. WSN monitors and senses the environment of targeted area. The sensor nodes in WSN transmit data to the base station depending on the application. These sensor nodes communicate with each other and routing is selected on the basis of routing protocols which are application specific. Based on network structure, routing protocols in WSN can be divided into two categories: flat routing, hierarchical or cluster based routing, location based routing. Out of these, hierarchical or cluster based routing is becoming an active branch of routing technology in WSN. To allow base station to receive unaltered or original data, routing protocol should be energy-efficient and secure. To fulfill this, Hierarchical or Cluster base routing protocol for WSN is the most energy-efficient among other routing protocols. Hence, in this paper, we present a survey on different hierarchical clustered routing techniques for WSN. We also present the key management schemes to provide security in WSN. Further we study and compare secure hierarchical routing protocols based on various criteria.


Author(s):  
A. Radhika ◽  
D. Haritha

Wireless Sensor Networks, have witnessed significant amount of improvement in research across various areas like Routing, Security, Localization, Deployment and above all Energy Efficiency. Congestion is a problem of  importance in resource constrained Wireless Sensor Networks, especially for large networks, where the traffic loads exceed the available capacity of the resources . Sensor nodes are prone to failure and the misbehaviour of these faulty nodes creates further congestion. The resulting effect is a degradation in network performance, additional computation and increased energy consumption, which in turn decreases network lifetime. Hence, the data packet routing algorithm should consider congestion as one of the parameters, in addition to the role of the faulty nodes and not merely energy efficient protocols .Nowadays, the main central point of attraction is the concept of Swarm Intelligence based techniques integration in WSN.  Swarm Intelligence based Computational Swarm Intelligence Techniques have improvised WSN in terms of efficiency, Performance, robustness and scalability. The main objective of this research paper is to propose congestion aware , energy efficient, routing approach that utilizes Ant Colony Optimization, in which faulty nodes are isolated by means of the concept of trust further we compare the performance of various existing routing protocols like AODV, DSDV and DSR routing protocols, ACO Based Routing Protocol  with Trust Based Congestion aware ACO Based Routing in terms of End to End Delay, Packet Delivery Rate, Routing Overhead, Throughput and Energy Efficiency. Simulation based results and data analysis shows that overall TBC-ACO is 150% more efficient in terms of overall performance as compared to other existing routing protocols for Wireless Sensor Networks.


Sign in / Sign up

Export Citation Format

Share Document