Affymetrix Chip Definition Files Construction Based on Custom Probe Set Annotation Database

Author(s):  
Michał Marczyk ◽  
Roman Jaksik ◽  
Andrzej Polański ◽  
Joanna Polańska
2009 ◽  
Vol 56 (2) ◽  
Author(s):  
Roman Jaksik ◽  
Joanna Polańska ◽  
Robert Herok ◽  
Joanna Rzeszowska-Wolny

Microarray methods have become a basic tool in studies of global gene expression and changes in transcript levels. Affymetrix microarrays from the HGU133 series contain multiple probe-sets complementary to the same gene (4742 genes are represented by more than one probe-set in a microarray HGU133A). Individual probe-sets annotated to the same gene often show different hybridization signals and even opposite trends, which may result from some of them matching transcripts of more than one gene and from the existence of different splice-variant transcripts. Existing methods that redefine probe-sets and develop custom probe-set definitions use mathematical tools such as Matlab or the R statistical environment with the Bioconductor package (Gentleman et al., 2004, Genome Biol. 5: 280) and thus are directed to researchers with a good knowledge of bioinformatics. We propose here a new approach based on the principle that a probe-set which hybridizes to more than one transcript can be recognized because it produces a signal significantly different from others assigned to the particular gene, allowing it to be detected as an outlier in the group and eliminated from subsequent analyses. A simple freeware application has been developed (available at www.bioinformatics.aei.polsl.pl) that detects and removes outlying probe-sets and calculates average signal values for individual genes using the latest annotation database provided by Affymetrix. We illustrate this procedure using microarray data from our experiments aiming to study changes of transcription profile induced by ionizing radiation in human cells.


Author(s):  
Paolo Giamundo

Background: Minimally-invasive treatments for hemorrhoids should be encouraged as they cause low morbidity, reasonable discomfort and quicker return to work. According to the “vascular theory” hemorrhoidal disease is mainly caused by blood overflow into hemorrhoidal plexus deriving from the superior hemorrhoidal arteries. Introduction: Many different procedures have been described in the literature with the common goal of reducing the blood flow into the hemorrhoidal piles. ‘HeLP’ (Hemorrhoids Laser Procedure) is a novel form of dearterialization to treat patients suffering from symptomatic hemorrhoids. Methods: The procedure consists of the closure of the terminal branches of the superior rectal artery approximately 2-3 cm above the dentate line by means of laser shots originated by a diode laser platform. The arteries, at that level, have variable location and distribution. Therefore, a doppler probe set at the frequency of 20MHz helps identifying the arteries that would be missed otherwise. The laser beam is well tolerated by patients. For this reason, anesthesia is not required in most cases and the procedure allows a quick return to daily activities. In case of concomitant severe mucosal prolapse, the laser treatment can be combined with suture mucopexy. Three to six running sutures allow a complete lifting of hemorrhoidal piles, securing long-term resolution of symptoms. Results and Conclusions: ‘HeLP’ is indicated in patients with symptomatic hemorrhoids where conservative treatment failed and when mucosal prolapse is scarce or not symptomatic. The addition of mucopexy to laser treatment (HeLPexx) contributes to overall resolution of symptoms when mucosal prolapse is an issue, Emborrhoid is another novel, ‘hi-tech’ form of selective dearterialization used in selected case of hemorrhoids where main symptom is bleeding. It is generally used in cases where surgery is contraindicated due to severe concomitant diseases.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
John T. Lovell ◽  
Nolan B. Bentley ◽  
Gaurab Bhattarai ◽  
Jerry W. Jenkins ◽  
Avinash Sreedasyam ◽  
...  

AbstractGenome-enabled biotechnologies have the potential to accelerate breeding efforts in long-lived perennial crop species. Despite the transformative potential of molecular tools in pecan and other outcrossing tree species, highly heterozygous genomes, significant presence–absence gene content variation, and histories of interspecific hybridization have constrained breeding efforts. To overcome these challenges, here, we present diploid genome assemblies and annotations of four outbred pecan genotypes, including a PacBio HiFi chromosome-scale assembly of both haplotypes of the ‘Pawnee’ cultivar. Comparative analysis and pan-genome integration reveal substantial and likely adaptive interspecific genomic introgressions, including an over-retained haplotype introgressed from bitternut hickory into pecan breeding pedigrees. Further, by leveraging our pan-genome presence–absence and functional annotation database among genomes and within the two outbred haplotypes of the ‘Lakota’ genome, we identify candidate genes for pest and pathogen resistance. Combined, these analyses and resources highlight significant progress towards functional and quantitative genomics in highly diverse and outbred crops.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Jesse W. Breinholt ◽  
Sarah B. Carey ◽  
George P. Tiley ◽  
E. Christine Davis ◽  
Lorena Endara ◽  
...  

Author(s):  
Sijia Wu ◽  
Mengyuan Yang ◽  
Pora Kim ◽  
Xiaobo Zhou

Abstract A-to-I RNA editing, contributing to nearly 90% of all editing events in human, has been reported to involve in the pathogenesis of Alzheimer’s disease (AD) due to its roles in brain development and immune regulation, such as the deficient editing of GluA2 Q/R related to cell death and memory loss. Currently, there are urgent needs for the systematic annotations of A-to-I RNA editing events in AD. Here, we built ADeditome, the annotation database of A-to-I RNA editing in AD available at https://ccsm.uth.edu/ADeditome, aiming to provide a resource and reference for functional annotation of A-to-I RNA editing in AD to identify therapeutically targetable genes in an individual. We detected 1676 363 editing sites in 1524 samples across nine brain regions from ROSMAP, MayoRNAseq and MSBB. For these editing events, we performed multiple functional annotations including identification of specific and disease stage associated editing events and the influence of editing events on gene expression, protein recoding, alternative splicing and miRNA regulation for all the genes, especially for AD-related genes in order to explore the pathology of AD. Combing all the analysis results, we found 108 010 and 26 168 editing events which may promote or inhibit AD progression, respectively. We also found 5582 brain region-specific editing events with potentially dual roles in AD across different brain regions. ADeditome will be a unique resource for AD and drug research communities to identify therapeutically targetable editing events. Significance: ADeditome is the first comprehensive resource of the functional genomics of individual A-to-I RNA editing events in AD, which will be useful for many researchers in the fields of AD pathology, precision medicine, and therapeutic researches.


Science News ◽  
1969 ◽  
Vol 95 (17) ◽  
pp. 411 ◽  
Author(s):  
Ann Ewing
Keyword(s):  

Kerntechnik ◽  
2021 ◽  
Vol 86 (3) ◽  
pp. 236-243
Author(s):  
G. R. Sunaryo ◽  
R. Kusumastuti ◽  
Sriyono

Abstract The objective of this research is to understand the condition of the structural material of the 30 MW RSG-GAS research reactor as input for the aging management program. Furthermore, this should enable a prediction of the remaining life of the components. In the current experiment, corrosion surveillance was carried out at Interim Storage for Spent Fuel (ISSF), that has similar water quality as in reactor pool by using a corrosion probe which is made of aluminum alloy and stainless steel. The probe set is designed to understand the effect of water quality in the ISSF pond. The corrosion processes observed were pitting, crevice and galvanic corrosion. Two sets of corrosion probes were immersed into the ISSF pool in 2007, hanging by steel wire, 1-meter height from the bottom surface. One probe set consists of horizontal and vertical positions. The soaking time was 7 years. The observations made were water chemical content, corrosion rate and visual analysis, macro and micro. For macro visual observations an optical microscope was used, for micro-observations SEM-EDX. From the results of macro-observations, information on the presence of galvanic corrosion, crevice and pitting was obtained. SEM-EDX provides information on the influence of chloride ions on corrosion products. This experience will be very useful in dealing with the aging process of Indonesia’s nuclear power plants in the future.


Author(s):  
Noor D. White ◽  
Zachary A. Batz ◽  
Edward L. Braun ◽  
Michael J. Braun ◽  
Karen L. Carleton ◽  
...  
Keyword(s):  

2018 ◽  
Vol 68 (4) ◽  
pp. 594-606 ◽  
Author(s):  
Matthew G Johnson ◽  
Lisa Pokorny ◽  
Steven Dodsworth ◽  
Laura R Botigué ◽  
Robyn S Cowan ◽  
...  

Author(s):  
Harsha Doddapaneni ◽  
Sara Javornik Cregeen ◽  
Richard Sucgang ◽  
Qingchang Meng ◽  
Xiang Qin ◽  
...  

AbstractThe newly emerged and rapidly spreading SARS-CoV-2 causes coronavirus disease 2019 (COVID-19). To facilitate a deeper understanding of the viral biology we developed a capture sequencing methodology to generate SARS-CoV-2 genomic and transcriptome sequences from infected patients. We utilized an oligonucleotide probe-set representing the full-length genome to obtain both genomic and transcriptome (subgenomic open reading frames [ORFs]) sequences from 45 SARS-CoV-2 clinical samples with varying viral titers. For samples with higher viral loads (cycle threshold value under 33, based on the CDC qPCR assay) complete genomes were generated. Analysis of junction reads revealed regions of differential transcriptional activity and provided evidence of expression of ORF10. Heterogeneous allelic frequencies along the 20kb ORF1ab gene suggested the presence of a defective interfering viral RNA species subpopulation in one sample. The associated workflow is straightforward, and hybridization-based capture offers an effective and scalable approach for sequencing SARS-CoV-2 from patient samples.


Sign in / Sign up

Export Citation Format

Share Document