Will Perturbing Soil Moisture Improve Warm-Season Ensemble Forecasts? A Proof of Concept

2006 ◽  
Vol 134 (11) ◽  
pp. 3174-3189 ◽  
Author(s):  
Christian Sutton ◽  
Thomas M. Hamill ◽  
Thomas T. Warner

Abstract Current generation short-range ensemble forecast members tend to be unduly similar to each other, especially for components such as surface temperature and precipitation. One possible cause of this is a lack of perturbations to the land surface state. In this experiment, a two-member ensemble of the Advanced Research Weather Research and Forecasting (WRF) model (ARW) was run from two different soil moisture analyses. One-day forecasts were conducted for six warm-season cases over the central United States with moderate soil moistures, both with explicit convection at 5-km grid spacing and with parameterized convection at 20-km grid spacing. Since changing the convective parameterization has previously been demonstrated to cause significant differences between ensemble forecast members, 20-km simulations were also conducted that were initialized with the same soil moisture but that used two different convective parameterizations as a reference. At 5 km, the forecast differences due to changing the soil moisture were comparable to the differences in 20-km simulations with the same soil moisture but with a different convective parameterization. The differences of 20-km simulations from different soil moistures were occasionally large but typically smaller than the differences from changing the convective parameterization. Thus, perturbing the state of the land surface for this version of WRF/ARW was judged to be likely to increase the spread of warm-season operational short-range ensemble forecasts of precipitation and surface temperature when soil moistures are moderate in value, especially if the ensemble is comprised of high-resolution members with explicit convection.

2021 ◽  
Author(s):  
Roberto Mulero-Martinez ◽  
Carlos Román-Cascón ◽  
Marie Lothon ◽  
Fabienne Lohou ◽  
Carlos Yagüe ◽  
...  

<p>Sea breezes are common and recurrent thermally-driven wind circulations formed in coastal areas under conditions of weak synoptic forcing. The different heat capacity between the land and the sea causes the thermal contrast needed for their formation. Therefore, the temperature changes at the surface of both the sea and the land influence the breezes characteristics. In this work, we investigate how sensitive are the sea breezes to changes in land cover and soil moisture, which may have a direct impact on the surface temperature inland. This is done through the design of different sensitivity experiments performed with the Weather Research and Forecasting (WRF) model, where we tested the effect of the land use and soil moisture modification. This was done through the simulation of a typical sea-breeze case study in the coastal area of the southwest of the Iberian Peninsula (Gulf of Cádiz). The differences among the experiments are compared spatially and confronted with observations from different meteorological towers at the coast and inland. A special emphasis is made on the changes observed in the area of the National Park of Doñana. This area is characterised by large shallow marshes with varying seasonal status and extensive rice crops. Thus, contrasting conditions of the surface are typically observed, which also depend on the previous hydrological conditions. Preliminary results highlight the importance of the correct representation of the surface inland to obtain a proper simulation of the sea-breeze system. Besides, new lines of research emerge to analyse the impacts caused by other potential modifications in the surface conditions of the land and the ocean (e.g., global change, urbanization, crop modification, changes in precipitation regimes or sea surface temperature, etc).</p>


2006 ◽  
Vol 134 (9) ◽  
pp. 2632-2641 ◽  
Author(s):  
William A. Gallus ◽  
James F. Bresch

Abstract A series of simulations for 15 events occurring during August 2002 were performed using the Weather Research and Forecasting (WRF) model over a domain encompassing most of the central United States to compare the sensitivity of warm season rainfall forecasts with changes in model physics, dynamics, and initial conditions. Most simulations were run with 8-km grid spacing. The Advanced Research WRF (ARW) and the nonhydrostatic mesoscale model (NMM) dynamic cores were used. One physics package (denoted NCEP) used the Betts–Miller–Janjic convective scheme with the Mellor–Yamada–Janjic planetary boundary layer (PBL) scheme and GFDL radiation package; the other package (denoted NCAR) used the Kain–Fritsch convective scheme with the Yonsei University PBL scheme and the Dudhia rapid radiative transfer model radiation. Other physical schemes were the same (e.g., the Noah land surface model, Ferrier et al. microphysics) in all runs. Simulations suggest that the sensitivity of the model to changes in physics is a function of which the dynamic core is used, and the sensitivity to the dynamic core is a function of the physics used. The greatest sensitivity in general is associated with a change in physics packages when the NMM core is used. Sensitivity to a change in physics when the ARW core is used is noticeably less. For light rainfall, the spread in the rainfall forecasts when physics are changed under the ARW core is actually less at most times than when the dynamic core is changed while NCAR physics are used. For light rainfall, the WRF model using NCAR physics is much more sensitive to a change in dynamic core than the WRF model using NCEP physics. For heavier rainfall, the opposite is true with a greater sensitivity occurring when NCEP physics is used. Sensitivity to initial conditions (Eta versus the Rapid Update Cycle with an accompanying small change in grid spacing) is generally less substantial than the sensitivity to changes in dynamic core or physics, except in the first 6–12 h of the forecast when it is comparable. As might be expected for warm season rainfall, the finescale structure of rainfall forecasts is more affected by the physics used than the dynamic core used. Surprisingly, however, the overall areal coverage and rain volume within the domain may be more influenced by the dynamic core choice than the physics used.


2021 ◽  
Author(s):  
Gaetana Ganci ◽  
Annalisa Cappello ◽  
Giuseppe Bilotta ◽  
Giuseppe Pollicino ◽  
Luigi Lodato

<p>The application of remote sensing for monitoring, detecting and analysing the spatial and extents and temporal changes of waste dumping sites and landfills could become a cost-effective and powerful solution. Multi-spectral satellite images, especially in the thermal infrared, can be exploited to characterize the state of activity of a landfill.  Indeed, waste disposal sites, during the period of activity, can show differences in surface temperature (LST, Land Surface Temperature), state of vegetation (estimated through NDVI, Normalized Difference Vegetation Index) or soil moisture (estimated through NDWI, Normalized Difference Water Index) compared to neighboring areas. Landfills with organic waste typically show higher temperatures than surrounding areas due to exothermic decomposition activities. In fact, the biogas, in the absence or in case of inefficiency of the conveying plants, rises through the layers of organic matter and earth (landfill body) until it reaches the surface at a temperature of over 40 ° C. Moreover, in some cases, leachate contamination of the aquifers can be identified by analyzing the soil moisture, through the estimate of the NDWI, and the state of suffering of the vegetation surrounding the site, through the estimate of the NDVI. This latter can also be an indicator of soil contamination due to the presence of toxic and potentially dangerous waste when buried or present nearby. To take into account these facts, we combine the LST, NDVI and NDWI indices of the dump site and surrounding areas in order to characterize waste disposal sites. Preliminary results show how this approach can bring out the area and level of activity of known landfill sites. This could prove particularly useful for the definition of intervention priorities in landfill remediation works.</p>


2013 ◽  
Vol 17 (3) ◽  
pp. 1177-1188 ◽  
Author(s):  
B. Li ◽  
M. Rodell

Abstract. Past studies on soil moisture spatial variability have been mainly conducted at catchment scales where soil moisture is often sampled over a short time period; as a result, the observed soil moisture often exhibited smaller dynamic ranges, which prevented the complete revelation of soil moisture spatial variability as a function of mean soil moisture. In this study, spatial statistics (mean, spatial variability and skewness) of in situ soil moisture, modeled and satellite-retrieved soil moisture obtained in a warm season (198 days) were examined over three large climate regions in the US. The study found that spatial moments of in situ measurements strongly depend on climates, with distinct mean, spatial variability and skewness observed in each climate zone. In addition, an upward convex shape, which was revealed in several smaller scale studies, was observed for the relationship between spatial variability of in situ soil moisture and its spatial mean when statistics from dry, intermediate, and wet climates were combined. This upward convex shape was vaguely or partially observable in modeled and satellite-retrieved soil moisture estimates due to their smaller dynamic ranges. Despite different environmental controls on large-scale soil moisture spatial variability, the correlation between spatial variability and mean soil moisture remained similar to that observed at small scales, which is attributed to the boundedness of soil moisture. From the smaller support (effective area or volume represented by a measurement or estimate) to larger ones, soil moisture spatial variability decreased in each climate region. The scale dependency of spatial variability all followed the power law, but data with large supports showed stronger scale dependency than those with smaller supports. The scale dependency of soil moisture variability also varied with climates, which may be linked to the scale dependency of precipitation spatial variability. Influences of environmental controls on soil moisture spatial variability at large scales are discussed. The results of this study should be useful for diagnosing large scale soil moisture estimates and for improving the estimation of land surface processes.


2021 ◽  
Vol 25 (1) ◽  
pp. 94-107
Author(s):  
M. C. A. Torbenson ◽  
D. W. Stahle ◽  
I. M. Howard ◽  
D. J. Burnette ◽  
D. Griffin ◽  
...  

Abstract Season-to-season persistence of soil moisture drought varies across North America. Such interseasonal autocorrelation can have modest skill in forecasting future conditions several months in advance. Because robust instrumental observations of precipitation span less than 100 years, the temporal stability of the relationship between seasonal moisture anomalies is uncertain. The North American Seasonal Precipitation Atlas (NASPA) is a gridded network of separately reconstructed cool-season (December–April) and warm-season (May–July) precipitation series and offers new insights on the intra-annual changes in drought for up to 2000 years. Here, the NASPA precipitation reconstructions are rescaled to represent the long-term soil moisture balance during the cool season and 3-month-long atmospheric moisture during the warm season. These rescaled seasonal reconstructions are then used to quantify the frequency, magnitude, and spatial extent of cool-season drought that was relieved or reversed during the following summer months. The adjusted seasonal reconstructions reproduce the general patterns of large-scale drought amelioration and termination in the instrumental record during the twentieth century and are used to estimate relief and reversals for the most skillfully reconstructed past 500 years. Subcontinental-to-continental-scale reversals of cool-season drought in the following warm season have been rare, but the reconstructions display periods prior to the instrumental data of increased reversal probabilities for the mid-Atlantic region and the U.S. Southwest. Drought relief at the continental scale may arise in part from macroscale ocean–atmosphere processes, whereas the smaller-scale regional reversals may reflect land surface feedbacks and stochastic variability.


2019 ◽  
Author(s):  
Bouchra Ait Hssaine ◽  
Olivier Merlin ◽  
Jamal Ezzahar ◽  
Nitu Ojha ◽  
Salah Er-raki ◽  
...  

Abstract. Thermal-based two-source energy balance modeling is very useful for estimating the land evapotranspiration (ET) at a wide range of spatial and temporal scales. However, the land surface temperature (LST) is not sufficient for constraining simultaneously both soil and vegetation flux components in such a way that assumptions (on either the soil or the vegetation fluxes) are commonly required. To avoid such assumptions, a new energy balance model (TSEB-SM) was recently developed in Ait Hssaine et al. (2018a) to integrate the microwave-derived near-surface soil moisture (SM), in addition to the thermal-derived LST and vegetation cover fraction (fc). Whereas, TSEB-SM has been recently tested using in-situ measurements, the objective of this paper is to evaluate the performance of TSEB-SM in real-life using 1 km resolution MODIS (Moderate resolution imaging spectroradiometer) LST and fc data and the 1 km resolution SM data disaggregated from SMOS (Soil Moisture and Ocean Salinity) observations by using DisPATCh. The approach is applied during a four-year period (2014–2018) over a rainfed wheat field in the Tensift basin, central Morocco, during a four-year period (2014–2018). The field was seeded for the 2014–2015 (S1), 2016–2017 (S2) and 2017–2018 (S3) agricultural season, while it was not ploughed (remained as bare soil) during the 2015–2016 (B1) agricultural season. The mean retrieved values of (arss, brss) calculated for the entire study period using satellite data are (7.32, 4.58). The daily calibrated αPT ranges between 0 and 1.38 for both S1 and S2. Its temporal variability is mainly attributed to the rainfall distribution along the agricultural season. For S3, the daily retrieved αPT remains at a mostly constant value (∼ 0.7) throughout the study period, because of the lack of clear sky disaggregated SM and LST observations during this season. Compared to eddy covariance measurements, TSEB driven only by LST and fc data significantly overestimates latent heat fluxes for the four seasons. The overall mean bias values are 119, 94, 128 and 181 W/m2 for S1, S2, S3 and B1 respectively. In contrast, these errors are much reduced when using TSEB-SM (SM and LST combined data) with the mean bias values estimated as 39, 4, 7 and 62 W/m2 for S1, S2, S3 and B1 respectively.


Sign in / Sign up

Export Citation Format

Share Document