Best View Selection of 3D Object Based on Sample Learning

Author(s):  
Zhi Liu ◽  
Yipan Feng ◽  
Qihua Chen ◽  
Xiang Pan
2018 ◽  
Vol 10 (8) ◽  
pp. 1285 ◽  
Author(s):  
Reza Attarzadeh ◽  
Jalal Amini ◽  
Claudia Notarnicola ◽  
Felix Greifeneder

This paper presents an approach for retrieval of soil moisture content (SMC) by coupling single polarization C-band synthetic aperture radar (SAR) and optical data at the plot scale in vegetated areas. The study was carried out at five different sites with dominant vegetation cover located in Kenya. In the initial stage of the process, different features are extracted from single polarization mode (VV polarization) SAR and optical data. Subsequently, proper selection of the relevant features is conducted on the extracted features. An advanced state-of-the-art machine learning regression approach, the support vector regression (SVR) technique, is used to retrieve soil moisture. This paper takes a new look at soil moisture retrieval in vegetated areas considering the needs of practical applications. In this context, we tried to work at the object level instead of the pixel level. Accordingly, a group of pixels (an image object) represents the reality of the land cover at the plot scale. Three approaches, a pixel-based approach, an object-based approach, and a combination of pixel- and object-based approaches, were used to estimate soil moisture. The results show that the combined approach outperforms the other approaches in terms of estimation accuracy (4.94% and 0.89 compared to 6.41% and 0.62 in terms of root mean square error (RMSE) and R2), flexibility on retrieving the level of soil moisture, and better quality of visual representation of the SMC map.


Author(s):  
Shenggang Guo ◽  
Zhiling Yuan ◽  
Fenghe Wu ◽  
Yongxin Li ◽  
Shaoshuai Wang ◽  
...  

The selection of biomimetic prototypes mostly depends on the subjective observation of a designer. This research uses TRIZ to explore some inferential steps in bionic design of the heavy machine tool column. Conflict resolution theory of TRIZ is applied to describe improved and deteriorated parameters and a contradiction matrix is used to obtain recommended inventive principles. A reference table of solutions corresponding to the biological phenomenon and TRIZ solutions is formed to expedite retrieving the biomimetic object. Based on the table, herbaceous hollow stem is selected to imitate column structure. Four kinds of plant are chosen from the biological database. To select the best from four candidates, a bionic ideality evaluation index is proposed based on similarity analysis and ideality evaluation theory in TRIZ. Thus, the bionic effect can be described and compared quantitatively. Bionic configuration is then evolved concerning manufacturing requirements. Size optimization of stiffener thicknesses is implemented finally, and satisfactory results of the lightweight effect is obtained.


2017 ◽  
Vol 7 (2) ◽  
pp. 13
Author(s):  
Nurcahyani Dewi Retnowati

Three-dimensional applications has evolved penetrated in almost all areas of work, especially in the field of multimedia and other virtual media. Offeature films, television, print design to production games. LightWave 3D is a software that can model an object once animate. This research model a 3D object using LightWave Modeler then analyzed the results of modeling using graphic editors in LightWave Layout. To connect between LightWave Modeler and LightWave Layout used LightWave Hub. Analysis using the graphic editor can make a better model for the selection of each layer more detail.


2018 ◽  
Vol 115 ◽  
pp. 1-11 ◽  
Author(s):  
Yimin C. Wang ◽  
Michael J. Pyrcz ◽  
Octavian Catuneanu ◽  
Jeff B. Boisvert
Keyword(s):  

2008 ◽  
pp. 3085-3115
Author(s):  
Biren Shah ◽  
Karthik Ramachandran ◽  
Vijay Raghavan

Materialized view selection is one of the crucial decisions in designing a data warehouse for optimal efficiency. Static selection of views may materialize certain views that are not beneficial as the data and usage trends change over time. On the contrary, dynamic selection of views works better only for queries demanding a high degree of aggregation. These facts point to the need for a technique that combines the improved response time of the static approach and the automated tuning capability of the dynamic approach. In this article, we propose a hybrid approach for the selection of materialized views. The idea is to partition the collection of all views into a static and dynamic set such that views selected for materialization from the static set are persistent over multiple query (and maintenance) windows, whereas views selected from the dynamic set can be queried and/or replaced on the fly. Highly aggregated views are selected on the fly based on the query access patterns of users, whereas the more detailed static set of views plays a significant role in the efficient maintenance of the dynamic set of views and in answering certain detailed view queries. We prove that our proposed strategy satisfies the monotonicity requirements, which is essential in order for the greedy heuristic to deliver competitive solutions. Experimental results show that our approach outperforms Dynamat, a well-known dynamic view management system that is known to outperform optimal static view selection.


2000 ◽  
Vol 12 (supplement 2) ◽  
pp. 106-117 ◽  
Author(s):  
Catherine M. Arrington ◽  
Thomas H. Carr ◽  
Andrew R. Mayer ◽  
Stephen M. Rao

Objects play an important role in guiding spatial attention through a cluttered visual environment. We used event-related functional magnetic resonance imaging (ER-fMRI) to measure brain activity during cued discrimination tasks requiring subjects to orient attention either to a region bounded by an object (object-based spatial attention) or to an unbounded region of space (location-based spatial attention) in anticipation of an upcoming target. Comparison between the two tasks revealed greater activation when attention selected a region bounded by an object. This activation was strongly lateralized to the left hemisphere and formed a widely distributed network including (a) attentional structures in parietal and temporal cortex and thalamus, (b) ventral-stream object processing structures in occipital, inferior-temporal, and parahippocampal cortex, and (c) control structures in medial-and dorsolateral-prefrontal cortex. These results suggest that object-based spatial selection is achieved by imposing additional constraints over and above those processes already operating to achieve selection of an unbounded region. In addition, ER-fMRI methodology allowed a comparison of validly versus invalidly cued trials, thereby delineating brain structures involved in the reorientation of attention after its initial deployment proved incorrect. All areas of activation that differentiated between these two trial types resulted from greater activity during the invalid trials. This outcome suggests that all brain areas involved in attentional orienting and task performance in response to valid cues are also involved on invalid trials. During invalid trials, additional brain regions are recruited when a perceiver recovers from invalid cueing and reorients attention to a target appearing at an uncued location. Activated brain areas specific to attentional reorientation were strongly right-lateralized and included posterior temporal and inferior parietal regions previously implicated in visual attention processes, as well as prefrontal regions that likely subserve control processes, particularly related to inhibition of inappropriate responding.


2011 ◽  
Vol 23 (9) ◽  
pp. 2231-2239 ◽  
Author(s):  
Carsten N. Boehler ◽  
Mircea A. Schoenfeld ◽  
Hans-Jochen Heinze ◽  
Jens-Max Hopf

Attention to one feature of an object can bias the processing of unattended features of that object. Here we demonstrate with ERPs in visual search that this object-based bias for an irrelevant feature also appears in an unattended object when it shares that feature with the target object. Specifically, we show that the ERP response elicited by a distractor object in one visual field is modulated as a function of whether a task-irrelevant color of that distractor is also present in the target object that is presented in the opposite visual field. Importantly, we find this modulation to arise with a delay of approximately 80 msec relative to the N2pc—a component of the ERP response that reflects the focusing of attention onto the target. In a second experiment, we demonstrate that this modulation reflects enhanced neural processing in the unattended object. These observations together facilitate the surprising conclusion that the object-based selection of irrelevant features is spatially global even after attention has selected the target object.


2006 ◽  
Vol 68 (7) ◽  
pp. 1163-1175 ◽  
Author(s):  
Michi Matsukura ◽  
Shaun P. Vecera

Sign in / Sign up

Export Citation Format

Share Document