Gait Control for Guide Dog Robot to Walk and Climb a Step

Author(s):  
Manabu Kosaka
Keyword(s):  
1999 ◽  
Vol 126 (2) ◽  
pp. 139-148 ◽  
Author(s):  
R. Grasso ◽  
A. Peppe ◽  
F. Stratta ◽  
D. Angelini ◽  
M. Zago ◽  
...  

2018 ◽  
Vol 173 ◽  
pp. 02009
Author(s):  
Lu Xing-Hua ◽  
Huang Peng-Fen ◽  
Huang Wei-Peng

The bionic machine leg is disturbed by the joint during the walking process, which is easy to produce time delay, which causes the robustness of the control of the machine leg is not good. In order to improve the robustness of the bionic gait control of the machine leg, a robust control method for the bionic gait of the machine leg based on time - delay feedback is proposed. The gait correlation parameters of robot leg are collected by sensor array, and the dynamic model of bionic gait is constructed. The fuzzy controller of bionic gait of robot leg is constructed by using time-delay coupling control method. The delayed feedback control error compensation method of machine leg correction is taken to improve the steady control performance of the robotic leg, reduce the steady-state error, improve the robustness of the control machine leg. The simulation results show that this method is robust to the bionic gait control of the machine leg. The output error of the gait parameter can quickly converge to zero, and the accurate estimation of the attitude parameter is stronger.


Gerontology ◽  
2018 ◽  
Vol 65 (2) ◽  
pp. 164-173 ◽  
Author(s):  
Frederico Pieruccini-Faria ◽  
Yanina Sarquis-Adamson ◽  
Manuel Montero-Odasso

Background: Older adults with Mild Cognitive Impairment (MCI) are at higher risk of falls and injuries, but the underlying mechanism is poorly understood. Inappropriate anticipatory postural adjustments to overcome balance perturbations are affected by cognitive decline. However, it is unknown whether anticipatory gait control to avoid an obstacle is affected in MCI. Objective: Using the dual-task paradigm, we aim to assess whether gait control is affected during obstacle negotiation challenges in older adults with MCI. Methods: Seventy-nine participants (mean age = 72.0 ± 2.7 years; women = 30.3%) from the “Gait and Brain Study” were included in this study (controls = 27; MCI = 52). In order to assess the anticipatory control behaviour for obstacle negotiation, a 6-m electronic walkway embedded with sensors recorded foot prints to measure gait speed and step length variability, during early (3 steps before the late phase) and late (3 steps before the obstacle) pre-crossing phases of an ad hoc obstacle, set at 15% of participant’s height. Participants walked under single- and dual-task gait (counting backwards by 1’s from 100 while walking) conditions. Three-way mixed repeated-measures analysis of variance models examined differences in gait performance between groups when transitioning between pre-crossing phases towards an obstacle during single- and dual-task conditions. Analyses were adjusted for age, sex, years of education, lower limb function, fear of falling, medical status, depressive symptoms, baseline gait speed and executive function. Results: A significant three-way interaction among groups, pre-crossing phases and task showed that participants with MCI attenuated the gait deceleration (p = 0.02) and performed fewer step length adjustments (p = 0.03) when approaching the obstacle compared with controls while dual-tasking. These interactions were attenuated when executive function performance was added as a covariate in the adjusted statistical model. Conclusion: Older adults with MCI attenuate the anticipatory gait adjustments needed to avoid an obstacle when dual-tasking. Deficits in higher-order cognitive processing may limit obstacle negotiation capabilities in MCI populations, being a potential falls risk factor.


Robotics ◽  
2018 ◽  
Vol 7 (3) ◽  
pp. 48 ◽  
Author(s):  
Ruiqin Li ◽  
Hongwei Meng ◽  
Shaoping Bai ◽  
Yinyin Yao ◽  
Jianwei Zhang

The paper presents an innovative hexapod walking robot built with 3-UPU parallel mechanism. In the robot, the parallel mechanism is used as both an actuator to generate walking and also a connecting body to connect two groups of three legs, thus enabling the robot to walk with simple gait by very few motors. In this paper, forward and inverse kinematics solutions are obtained. The workspace of the parallel mechanism is analyzed using limit boundary search method. The walking stability of the robot is analyzed, which yields the robot’s maximum step length. The gait planning of the hexapod walking robot is studied for walking on both flat and uneven terrains. The new robot, combining the advantages of parallel robot and walking robot, has a large carrying capacity, strong passing ability, flexible turning ability, and simple gait control for its deployment for uneven terrains.


Sign in / Sign up

Export Citation Format

Share Document