Surface Skin Temperature in Tests for Irritant Dermatitis

Author(s):  
Miranda A. Farage ◽  
Baiyang Wang ◽  
Kenneth W. Miller ◽  
Howard Maibach
2019 ◽  
Vol 80 ◽  
pp. 82-88 ◽  
Author(s):  
Phillip Shilco ◽  
Yulia Roitblat ◽  
Noa Buchris ◽  
Jacob Hanai ◽  
Sabrina Cohensedgh ◽  
...  

2009 ◽  
Vol 58 (1) ◽  
pp. 67-71
Author(s):  
Masaru ICHIHASHI ◽  
Hiromi TAKATANI ◽  
Yoshikatsu HASHIMOTO ◽  
Kouji YANO ◽  
Atsuyuki NISHIDA ◽  
...  

2002 ◽  
Vol 15 (4) ◽  
pp. 353-369 ◽  
Author(s):  
C. J. Donlon ◽  
P. J. Minnett ◽  
C. Gentemann ◽  
T. J. Nightingale ◽  
I. J. Barton ◽  
...  

2016 ◽  
Author(s):  
Benjamin R. Scarino ◽  
Patrick Minnis ◽  
Thad Chee ◽  
Kristopher M. Bedka ◽  
Christopher R. Yost ◽  
...  

Abstract. Surface skin temperature (Ts) is an important parameter for characterizing the energy exchange at the ground/water-atmosphere interface. The Satellite ClOud and Radiation Property retrieval System (SatCORPS) employs a single-channel thermal-infrared- (TIR-) method to retrieve Ts over clear-sky land and ocean surfaces from data taken by geostationary-Earth orbit (GEO) satellite and low-Earth orbit (LEO) satellite imagers. GEO satellites can provide somewhat continuous estimates of Ts over the diurnal cycle in non-polar regions, while polar Ts retrievals from LEO imagers, such as the Advanced Very High Resolution Radiometer (AVHRR) can complement the GEO measurements. The combined global coverage of remotely sensed Ts, along with accompanying cloud and surface radiation parameters, produced in near-real time and from historical satellite data, should be beneficial for both weather and climate applications. For example, near-real-time hourly Ts observations can be assimilated in high-temporal resolution numerical weather prediction models and historical observations can be used for validation or assimilation of climate models. Key drawbacks to the utility of TIR-derived Ts, data include the limitation to clear-sky conditions, the reliance on a particular set of analyses/reanalyses necessary for atmospheric corrections, and the dependence on viewing angle. Therefore, Ts validation with established references is essential, as is proper evaluation of Ts sensitivity to atmospheric correction source. This article presents improvements on the NASA Langley GEO satellite and AVHRR TIR-based Ts product, derived using a single-channel technique. The resulting clear-sky skin temperature values are validated with surface references and independent satellite products. Furthermore, an empirical means of correcting for the viewing-angle dependency of satellite land surface temperature (LST) is explained and validated. Application of a daytime nadir-normalization model yields improved accuracy and precision of GOES-13 LST relative to independent Moderate-resolution Imaging Spectroradiometer (MYD11_L2) LST and Atmospheric Radiation Measurement Program/NOAA ESRL Surface Radiation network ground stations. These corrections serve as a basis for a means to improve satellite-based LST accuracy, thereby leading to better monitoring and utilization of the data. The immediate availability and broad coverage of these skin temperature observations should prove valuable to modelers and climate researchers looking for improved forecasts and better understanding of the global climate model.


2021 ◽  
Vol 13 (20) ◽  
pp. 11399
Author(s):  
Igor Gómez ◽  
Sergio Molina ◽  
Juan José Galiana-Merino ◽  
María José Estrela ◽  
Vicente Caselles

The current study evaluates the ability of the Weather Research and Forecasting Model (WRF) to forecast surface energy fluxes over a region in Eastern Spain. Focusing on the sensitivity of the model to Land Surface Model (LSM) parameterizations, we compare the simulations provided by the original Noah LSM and the Noah LSM with multiple physics options (Noah-MP). Furthermore, we assess the WRF sensitivity to different Noah-MP physics schemes, namely the calculation of canopy stomatal resistance (OPT_CRS), the soil moisture factor for stomatal resistance (OPT_BTR), and the surface layer drag coefficient (OPT_SFC). It has been found that these physics options strongly affect the energy partitioning at the land surface in short-time scale simulations. Aside from in situ observations, we use the Meteosat Second Generation (MSG) Spinning Enhanced Visible and Infrared Imager (SEVIRI) sensor to assess the Land Surface Temperature (LST) field simulated by WRF. Regarding multiple options in Noah-MP, WRF has been configured using three distinct soil moisture factors to control stomatal resistance (β factor) available in Noah-MP (Noah, CLM, and SSiB-types), two canopy stomatal resistance (Ball–Berry and Jarvis), and two options for surface layer drag coefficients (Monin–Obukhov and Chen97 scheme). Considering the β factor schemes, CLM and SSiB-type β factors simulate very low values of the latent heat flux while increasing the sensible heat flux. This result has been obtained independently of the canopy stomatal resistance scheme used. Additionally, the surface skin temperature simulated by Noah-MP is colder than that obtained by the original Noah LSM. This result is also highlighted when the simulated surface skin temperature is compared to the MSG-SEVIRI LST product. The largest differences between the satellite data and the mesoscale simulations are produced using the Noah-MP configurations run with the Monin–Obukhov parameterization for surface layer drag coefficients. In contrast, the Chen97 scheme shows larger surface skin temperatures than Monin–Obukhov, but at the expense of a decrease in the simulated sensible heat fluxes. In this regard, the ground heat flux and the net radiation play a key role in the simulation results.


2020 ◽  
Vol 12 (17) ◽  
pp. 2777
Author(s):  
Sarah Safieddine ◽  
Ana Claudia Parracho ◽  
Maya George ◽  
Filipe Aires ◽  
Victor Pellet ◽  
...  

Surface skin temperature (Tskin) derived from infrared remote sensors mounted on board satellites provides a continuous observation of Earth’s surface and allows the monitoring of global temperature change relevant to climate trends. In this study, we present a fast retrieval method for retrieving Tskin based on an artificial neural network (ANN) from a set of spectral channels selected from the Infrared Atmospheric Sounding Interferometer (IASI) using the information theory/entropy reduction technique. Our IASI Tskin product (i.e., TANN) is evaluated against Tskin from EUMETSAT Level 2 product, ECMWF Reanalysis (ERA5), SEVIRI observations, and ground in situ measurements. Good correlations between IASI TANN and the Tskin from other datasets are shown by their statistic data, such as a mean bias and standard deviation (i.e., [bias, STDE]) of [0.55, 1.86 °C], [0.19, 2.10 °C], [−1.5, 3.56 °C], from EUMETSAT IASI L-2 product, ERA5, and SEVIRI. When compared to ground station data, we found that all datasets did not achieve the needed accuracy at several months of the year, and better results were achieved at nighttime. Therefore, comparison with ground-based measurements should be done with care to achieve the ±2 °C accuracy needed, by choosing, for example, a validation site near the station location. On average, this accuracy is achieved, in particular at night, leading to the ability to construct a robust Tskin dataset suitable for Tskin long-term spatio-temporal variability and trend analysis.


Sign in / Sign up

Export Citation Format

Share Document