A Decision-Making Model for Environmental Behavior in Agent-Based Modeling

Author(s):  
Noelia Sánchez-Maroño ◽  
Amparo Alonso-Betanzos ◽  
Óscar Fontenla-Romero ◽  
Miguel Rodríguez-García ◽  
Gary Polhill ◽  
...  
Sensors ◽  
2020 ◽  
Vol 20 (6) ◽  
pp. 1554 ◽  
Author(s):  
Kyungwon Kang ◽  
Hesham A. Rakha

Lane changes are complex safety- and throughput-critical driver actions. Most lane-changing models deal with lane-changing maneuvers solely from the merging driver’s standpoint and thus ignore driver interaction. To overcome this shortcoming, we develop a game-theoretical decision-making model and validate the model using empirical merging maneuver data at a freeway on-ramp. Specifically, this paper advances our repeated game model by using updated payoff functions. Validation results using the Next Generation SIMulation (NGSIM) empirical data show that the developed game-theoretical model provides better prediction accuracy compared to previous work, giving correct predictions approximately 86% of the time. In addition, a sensitivity analysis demonstrates the rationality of the model and its sensitivity to variations in various factors. To provide evidence of the benefits of the repeated game approach, which takes into account previous decision-making results, a case study is conducted using an agent-based simulation model. The proposed repeated game model produces superior performance to a one-shot game model when simulating actual freeway merging behaviors. Finally, this lane change model, which captures the collective decision-making between human drivers, can be used to develop automated vehicle driving strategies.


Author(s):  
Tai-Tuck Yu ◽  
James P. Scanlan ◽  
Richard M. Crowder ◽  
Gary B. Wills

Discrete-event modeling has long been used for logistics and scheduling problems, while multi-agent modeling closely matches human decision-making process. In this paper, a metric-based comparison between the traditional discrete-event and the emerging agent-based modeling approaches is reported. The case study involved the implementation of two functionally identical models based on a realistic, nontrivial, civil aircraft gas turbine global repair operation. The size, structural complexity, and coupling metrics from the two models were used to gauge the benefits and drawbacks of each modeling paradigm. The agent-based model was significantly better than the discrete-event model in terms of execution times, scalability, understandability, modifiability, and structural flexibility. In contrast, and importantly in an engineering context, the discrete-event model guaranteed predictable and repeatable results and was comparatively easy to test because of its single-threaded operation. However, neither modeling approach on its own possesses all these characteristics nor can each handle the wide range of resolutions and scales frequently encountered in problems exemplified by the case study scenario. It is recognized that agent-based modeling can emulate high-level human decision-making and communication closely while discrete-event modeling provides a good fit for low-level sequential processes such as those found in manufacturing and logistics.


Author(s):  
Lin Qiu ◽  
Riyang Phang

Political systems involve citizens, voters, politicians, parties, legislatures, and governments. These political actors interact with each other and dynamically alter their strategies according to the results of their interactions. A major challenge in political science is to understand the dynamic interactions between political actors and extrapolate from the process of individual political decision making to collective outcomes. Agent-based modeling (ABM) offers a means to comprehend and theorize the nonlinear, recursive, and interactive political process. It views political systems as complex, self-organizing, self-reproducing, and adaptive systems consisting of large numbers of heterogeneous agents that follow a set of rules governing their interactions. It allows the specification of agent properties and rules governing agent interactions in a simulation to observe how micro-level processes generate macro-level phenomena. It forces researchers to make assumptions surrounding a theory explicit, facilitates the discovery of extensions and boundary conditions of the modeled theory through what-if computational experiments, and helps researchers understand dynamic processes in the real-world. ABM models have been built to address critical questions in political decision making, including why voter turnouts remain high, how party coalitions form, how voters’ knowledge and emotion affect election outcomes, and how political attitudes change through a campaign. These models illustrate the use of ABM in explicating assumptions and rules of theoretical frameworks, simulating repeated execution of these rules, and revealing emergent patterns and their boundary conditions. While ABM has limitations in external validity and robustness, it provides political scientists a bottom-up approach to study a complex system by clearly defining the behavior of various actors and generate theoretical insights on political phenomena.


Author(s):  
Michael Laver ◽  
Ernest Sergenti

This chapter begins with a brief discussion of the need for a new approach to modeling party competition. It then makes a case for the use of agent-based modeling to study multiparty competition in an evolving dynamic party system, given the analytical intractability of the decision-making environment, and the resulting need for real politicians to rely on informal decision rules. Agent-based models (ABMs) are “bottom-up” models that typically assume settings with a fairly large number of autonomous decision-making agents. Each agent uses some well-specified decision rule to choose actions, and there may be considerable diversity in the decision rules used by different agents. Given the analytical intractability of the decision-making environment, the decision rules that are specified and investigated in ABMs are typically based on adaptive learning rather than forward-looking strategic analysis, and agents are assumed to have bounded rather than perfect rationality. An overview of the subsequent chapters is also presented.


2020 ◽  
Vol 19 (2) ◽  
pp. 226-250 ◽  
Author(s):  
V.L. Makarov ◽  
R.A. Bakhtizin ◽  
G.L. Beklaryan ◽  
A.S. Akopov

Subject. The research investigates key processes of urban life and its maintenance, including food supply, infrastructure, fire security, quality and accessibility of medical services, etc. The article also discusses the creation of a system supporting the Smart City decision-making process. Objectives. The research develops methods and tools to manage the Smart City system through system dynamics and agent-based modeling. Methods. Using simulation modeling, namely system dynamics and agent-based modeling (supported via Powersim and AnyLogic), we evaluate how multiple guiding parameters influence crucial characteristics of the Smart City system. Results. We devised an approach to designing the Smart City system through methods of system dynamics and agent-based modeling (supported via Powersim and AnyLogic) intended to streamline the decision making process for reasonable urban planning. Conclusions and Relevance. We propose the consolidated architecture of the Smart City decision-making system integrating the simulation models, data storage and city monitoring subsystem. The article describes the cases of simulation models implemented via Powersim and AnyLogic to support rational urban planning. The simulation models will significantly improve the quality of urban environment, satisfy the demand for food products, provide access to healthcare services and ensure effective rescue actions in case of emergency.


Author(s):  
E. Ebenhoh

This chapter introduces an agent-based modeling framework for reproducing micro behavior in economic experiments. It gives an overview of the theoretical concept which forms the foundation of the framework as well as short descriptions of two exemplary models based on experimental data. The heterogeneous agents are endowed with a number of attributes like cooperativeness and employ more or less complex heuristics during their decision-making processes. The attributes help to distinguish between agents, and the heuristics distinguish between behavioral classes. Through this design, agents can be modeled to behave like real humans and their decision making is observable and traceable, features that are important when agent-based models are to be used in collaborative planning or participatory model-building processes.


Sign in / Sign up

Export Citation Format

Share Document