Predicting and Visualizing Storm Surges and Coastal Inundation: A Case Study from Maryland, USA

Author(s):  
Ming Li ◽  
Xiaohong Wang ◽  
Peng Jia
Author(s):  
Shraddha Praharaj ◽  
Faria Tuz Zahura ◽  
T. Donna Chen ◽  
Yawen Shen ◽  
Luwei Zeng ◽  
...  

Climate change and sea-level rise are increasingly leading to higher and prolonged high tides, which, in combination with the growing intensity of rainfall and storm surges, and insufficient drainage infrastructure, result in frequent recurrent flooding in coastal cities. There is a pressing need to understand the occurrence of roadway flooding incidents in order to enact appropriate mitigation measures. Agency data for roadway flooding events are scarce and resource-intensive to collect. Crowdsourced data can provide a low-cost alternative for mapping roadway flood incidents in real time; however, the reliability is questionable. This research demonstrates a framework for asserting trustworthiness on crowdsourced flood incident data in a case study of Norfolk, Virginia. Publicly available (but spatially limited) flood incident data from the city in combination with different environmental and topographical factors are used to create a logistic regression model to predict the probability of roadway flooding at any location on the roadway network. The prediction accuracy of the model was found to be 90.5%. When applying this model to crowdsourced Waze flood incident data, 71.7% of the reports were predicted to be trustworthy. This study demonstrates the potential for using Waze incident report data for roadway flooding detection, providing a framework for cities to identify trustworthy reports in real time to enable rapid situation assessment and mitigation to reduce incident impact.


Author(s):  
René L. Vellanoweth ◽  
Antonio Porcayo-Michelini ◽  
Richard B. Guttenberg ◽  
William Hayden ◽  
Amira F. Ainis ◽  
...  

2016 ◽  
Vol 82 (3) ◽  
pp. 1645-1681 ◽  
Author(s):  
Ryota Nakamura ◽  
Tomoya Shibayama ◽  
Miguel Esteban ◽  
Takumu Iwamoto
Keyword(s):  

Geologos ◽  
2014 ◽  
Vol 20 (4) ◽  
pp. 259-268 ◽  
Author(s):  
Grzegorz Uścinowicz ◽  
Regina Kramarska ◽  
Dorota Kaulbarsz ◽  
Leszek Jurys ◽  
Jerzy Frydel ◽  
...  

Abstract The coastline in the Jastrzębia Góra area can be divided into three major zones of general importance: a beach and barrier section, a cliff section, and a section protected by a heavy hydrotechnical construction. These areas are characterised by a diverse geology and origin, and hence different vulnerability to erosion. In addition, observations have demonstrated a different pace of erosion within each zone. Based on the results obtained by remote sensing methods (analysis of aerial photographs and maps), it has been determined that the coastline in the barrier area, i.e., to the west of Jastrzębia Góra, moved landwards by about 130 m, in a period of 100 years, and 80 m over about 50 years. A smaller displacement of the shoreline could be observed within the cliff. Between the middle of the twentieth and the start of the twenty-first centuries the shore retreated by about 25 m. However, in recent years, an active landslide has led to the displacement of the uppermost part of the cliff locally up to 25 m. Another issue is, functioning since 2000, a heavy hydrotechnical construction which has been built in order to protect the most active part of the cliff. The construction is not stable and its western part, over a distance of 50 m, has moved almost 2 m vertically downwards and c. 2.5 m horizontally towards the sea in the past two years. This illustrates that the erosional factor does not comprise only marine abrasion, but also involves land-based processes determined by geology and hydrogeology. Changes in the shoreline at the beach and barrier part are constantly conditioned by rising sea levels, the slightly sloping profile of the sea floor and low elevation values of the backshore and dune areas. Cliffs are destroyed by mass wasting and repetitive storm surges that are responsible for the removal of the colluvium which protects the coast from adverse wave effects. Presumably, mass movements combined with groundwater outflow from the cliff, plus sea abrasion cause destabilisation of the cliff protection construction.


2008 ◽  
Vol 17 ◽  
pp. 19-22 ◽  
Author(s):  
J. Wolf

Abstract. The physical causes of coastal flooding due to marine storms are discussed. We examine the costs and impacts of storm surges and waves with reference to the UK. The mechanisms of interaction between waves and the mean circulation due to tides and wind are reviewed. A case study to illustrate the magnitude of surges, waves and their interactions is presented for Liverpool Bay in the eastern Irish Sea. Applications of surge and wave models to the Mediterranean, especially the Adriatic Sea, are considered.


2020 ◽  
Vol 20 (10) ◽  
pp. 2777-2790
Author(s):  
Xianwu Shi ◽  
Pubing Yu ◽  
Zhixing Guo ◽  
Zhilin Sun ◽  
Fuyuan Chen ◽  
...  

Abstract. China is one of the countries that is most seriously affected by storm surges. In recent years, storm surges in coastal areas of China have caused huge economic losses and a large number of human casualties. Knowledge of the inundation range and water depth of storm surges under different typhoon intensities could assist predisaster risk assessment and making evacuation plans, as well as provide decision support for responding to storm surges. Taking Pingyang County in Zhejiang Province as a case study area, parameters including typhoon tracks, radius of maximum wind speed, astronomical tide, and upstream flood runoff were determined for different typhoon intensities. Numerical simulations were conducted using these parameters to investigate the inundation range and water depth distribution of storm surges in Pingyang County considering the impact of seawall collapse under five different intensity scenarios (corresponding to minimum central pressure values equal to 915, 925, 935, 945, and 965 hPa). The inundated area ranged from 103.51 to 233.16 km2 for the most intense typhoon. The proposed method could be easily adopted in various coastal counties and serves as an effective tool for decision-making in storm surge disaster risk reduction practices.


Sign in / Sign up

Export Citation Format

Share Document