Assessing Trustworthiness of Crowdsourced Flood Incident Reports Using Waze Data: A Norfolk, Virginia Case Study

Author(s):  
Shraddha Praharaj ◽  
Faria Tuz Zahura ◽  
T. Donna Chen ◽  
Yawen Shen ◽  
Luwei Zeng ◽  
...  

Climate change and sea-level rise are increasingly leading to higher and prolonged high tides, which, in combination with the growing intensity of rainfall and storm surges, and insufficient drainage infrastructure, result in frequent recurrent flooding in coastal cities. There is a pressing need to understand the occurrence of roadway flooding incidents in order to enact appropriate mitigation measures. Agency data for roadway flooding events are scarce and resource-intensive to collect. Crowdsourced data can provide a low-cost alternative for mapping roadway flood incidents in real time; however, the reliability is questionable. This research demonstrates a framework for asserting trustworthiness on crowdsourced flood incident data in a case study of Norfolk, Virginia. Publicly available (but spatially limited) flood incident data from the city in combination with different environmental and topographical factors are used to create a logistic regression model to predict the probability of roadway flooding at any location on the roadway network. The prediction accuracy of the model was found to be 90.5%. When applying this model to crowdsourced Waze flood incident data, 71.7% of the reports were predicted to be trustworthy. This study demonstrates the potential for using Waze incident report data for roadway flooding detection, providing a framework for cities to identify trustworthy reports in real time to enable rapid situation assessment and mitigation to reduce incident impact.

2011 ◽  
Vol 268-270 ◽  
pp. 772-780 ◽  
Author(s):  
Hsiung Cheng Lin ◽  
Liang Yih Liu ◽  
Kuo Hung Pai

Since the past years, the microprocessor (8051) has been still playing an indispensable role as a controller in industry applications because of fast executing process, low-cost, small size and low power consumption, etc. It, however, usually lacks of long distance transmission, graphical interface and vision. On the other hand, VB is now a very popular software package for graphical interface design due to easy exploring and low price. Combining both superiorities as above, this paper develops a remote visional microprocessor-based monitoring and control platform using VB graphical interface. The nearby PC (server) can collect real-time sensing signals from the 8051 through RS232 and transmit it to remote PCs (client) for on line monitoring mechanism via Internet. Also, the client can send the control signals to the server and thus control the 8051. The real-time case study for feeding care in the Pet House is provided to verify its well performance and remote Web-based capability in term of fast, simple and robust performance.


Water ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1466 ◽  
Author(s):  
Ciro Apollonio ◽  
Maria Francesca Bruno ◽  
Gabriele Iemmolo ◽  
Matteo Gianluca Molfetta ◽  
Roberta Pellicani

The growing concentration of population and the related increase in human activities in coastal areas require numerical simulations to analyze the effects of flooding events that might occur in susceptible coastal areas in order to determine effective coastal management practices and safety measures to safeguard the inhabited coastal areas. The reliability of the analysis is dependent on the correct evaluation of key inputs such as return period of flooding events, vulnerability of exposed assets, and other risk factors (e.g., spatial distribution of elements at risk, their economic value, etc.). This paper defines a methodology to assess the effects of flooding events associated with basin run-off and storm surge in coastal areas. The assessment aims at quantifying in economic terms (e.g., loss of assets) the risk of coastal areas subject to flooding events. The methodology proposed in this paper was implemented to determine the areas subject to inundation on a coastal area in Southern Italy prone to hydrogeological instability and coastal inundation. A two-dimensional hydraulic model was adopted to simulate storm surges generated by severe sea storms coupled with intense rainfalls in order to determine the areas subject to inundation in the low-land area along the Adriatic coast object of this study. In conclusion, the economic risk corresponding to four different flooding scenarios was assessed by correlating the exceedance probability of each flooding scenario with the potential economic losses that might be realized in the inundated areas. The results of the assessment can inform decision-makers responsible for the deployment of risk mitigation measures.


Sensors ◽  
2020 ◽  
Vol 21 (1) ◽  
pp. 50
Author(s):  
Steve H. L. Liang ◽  
Sara Saeedi ◽  
Soroush Ojagh ◽  
Sepehr Honarparvar ◽  
Sina Kiaei ◽  
...  

To safely protect workplaces and the workforce during and after the COVID-19 pandemic, a scalable integrated sensing solution is required in order to offer real-time situational awareness and early warnings for decision-makers. However, an information-based solution for industry reopening is ineffective when the necessary operational information is locked up in disparate real-time data silos. There is a lot of ongoing effort to combat the COVID-19 pandemic using different combinations of low-cost, location-based contact tracing, and sensing technologies. These ad hoc Internet of Things (IoT) solutions for COVID-19 were developed using different data models and protocols without an interoperable way to interconnect these heterogeneous systems and exchange data on people and place interactions. This research aims to design and develop an interoperable Internet of COVID-19 Things (IoCT) architecture that is able to exchange, aggregate, and reuse disparate IoT sensor data sources in order for informed decisions to be made after understanding the real-time risks in workplaces based on person-to-place interactions. The IoCT architecture is based on the Sensor Web paradigm that connects various Things, Sensors, and Datastreams with an indoor geospatial data model. This paper presents a study of what, to the best of our knowledge, is the first real-world integrated implementation of the Open Geospatial Consortium (OGC) Sensor Web Enablement (SWE) and IndoorGML standards to calculate the risk of COVID-19 online using a workplace reopening case study. The proposed IoCT offers a new open standard-based information model, architecture, methodologies, and software tools that enable the interoperability of disparate COVID-19 monitoring systems with finer spatial-temporal granularity. A workplace cleaning use case was developed in order to demonstrate the capabilities of this proposed IoCT architecture. The implemented IoCT architecture included proximity-based contact tracing, people density sensors, a COVID-19 risky behavior monitoring system, and the contextual building geospatial data.


Author(s):  
Gabriel de Almeida Souza ◽  
Larissa Barbosa ◽  
Glênio Ramalho ◽  
Alexandre Zuquete Guarato

Author(s):  
Kristopher D. Staller

Abstract Cold temperature failures are often difficult to resolve, especially those at extreme low levels (< -40°C). Momentary application of chill spray can confirm the failure mode, but is impractical during photoemission microscopy (PEM), laser scanning microscopy (LSM), and multiple point microprobing. This paper will examine relatively low-cost cold temperature systems that can hold samples at steady state extreme low temperatures and describe a case study where a cold temperature stage was combined with LSM soft defect localization (SDL) to rapidly identify the cause of a complex cold temperature failure mechanism.


2007 ◽  
Author(s):  
R. E. Crosbie ◽  
J. J. Zenor ◽  
R. Bednar ◽  
D. Word ◽  
N. G. Hingorani

Sign in / Sign up

Export Citation Format

Share Document