Cytochrome c Specific T Cell Hybrid

Author(s):  
S. Carel ◽  
C. Bron ◽  
G. Corradin
Keyword(s):  
T Cell ◽  
1982 ◽  
Vol 52 (3) ◽  
pp. 269-281 ◽  
Author(s):  
Belinda B. Beezley ◽  
Nancy H. Ruddle

1991 ◽  
Vol 173 (6) ◽  
pp. 1433-1439 ◽  
Author(s):  
R H Lin ◽  
M J Mamula ◽  
J A Hardin ◽  
C A Janeway

A novel mechanism for breaking T cell self tolerance is described. B cells induced to make autoantibody by immunization of mice with the non-self protein human cytochrome c can present the self protein mouse cytochrome c to autoreactive T cells in immunogenic form. This mechanism of breaking T cell self tolerance could account for the role of foreign antigens in breaking not only B cell but also T cell self tolerance, leading to sustained autoantibody production in the absence of the foreign antigen.


1987 ◽  
Vol 165 (2) ◽  
pp. 279-301 ◽  
Author(s):  
S B Sorger ◽  
S M Hedrick ◽  
P J Fink ◽  
M A Bookman ◽  
L A Matis

17 T cell clones and 3 T cell lines, specific for pigeon cytochrome c, were analyzed for fine specificity and rearranged T cell receptor (TCR) gene elements. Clones of similar fine specificities were grouped into one of four phenotypes, and correlations between phenotype differences and gene usage could be made. All the lines and clones rearranged a member of the V alpha 2B4 gene family to a limited number of J alpha regions. The beta chain was made up of one of three non-cross-hybridizing V beta regions, each rearranging to only one or two J beta s. The use of alternate V beta regions could be correlated with phenotype differences, which were manifested either as MHC- or MHC and antigen-specificity changes. In addition, the presence of alloreactivity, which defined a phenotype difference, could be correlated solely with the use of an alternate J alpha region. These observations were substantiated by prospective analyses of pigeon cytochrome c-specific T cell lines that were selected for alternate MHC specificity or alloreactivity and were found to express the correlated alpha and beta chain rearrangements. Previously, the TCR DNA sequences from two clones, each representing a variant of one phenotype, showed sequence differences only in the N regions of their TCR genes. Since only these two variants, using identical V alpha-J alpha and V beta-J beta gene elements, were repeatedly observed in this study, we would predict that the junctional diversity differences are selectable. In this T cell response, all the gene elements involved in the generation of diversity appear to be selected, and may therefore be important in the determination of TCR specificity. This high degree of receptor gene selection represents a fundamental difference from the diversity seen in several extensively analyzed antibody responses.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 2372-2372
Author(s):  
Kam Tong Leung ◽  
Karen Kwai Har Li ◽  
Samuel Sai Ming Sun ◽  
Paul Kay Sheung Chan ◽  
Yum Shing Wong ◽  
...  

Abstract Despite progress in the development of effective treatments against T-cell acute lymphoblastic leukemia (T-ALL), about 20% of patients still exhibit poor response to the current chemotherapeutic regimens and the cause of treatment failure in these patients remains largely unknown. In this study, we aimed at finding mechanisms that drive T-ALL cells resistant to chemotherapeutic agents. By screening etoposide sensitivity of a panel of T-ALL cell lines using DNA content and PARP cleavage as apoptosis markers, we identified an apoptosis-resistant cell line, Sup-T1. Western blot analysis and caspase activity assay showed that Sup-T1 cells were deficient in etoposide-induced activation of caspase-3 and caspase-9. In addition, mitochondrial cytochrome c release was not evident in etoposide-treated Sup-T1 cells. However, addition of exogenous cytochrome c in cell-free apoptosis reactions induced prominent caspase-3 activation, indicating that the chemoresistance observed in Sup-T1 cells was due to its insusceptibility to the drug-induced mitochondrial alterations. Analysis of the basal expression of the Bcl-2 family proteins revealed that the levels of Bcl-2 was higher in Sup-T1 cells, while Bax and BimEL levels were lower, when compared to etoposide-sensitive T-ALL cell lines. Gene silencing using antisense oligonucleotide to Bcl-2 and overexpression of Bax did not resensitize cells to etoposide-induced apoptosis. On the contrary, transient transfection of BimEL into Sup-T1 cells significantly restored etoposide sensitivity. Further experiments revealed that the lack of BimEL expression in Sup-T1 cells was due to the rapid degradation of newly-synthesized BimEL by the proteosomal pathway, as treatment of Sup-T1 cells with a proteosome inhibitor significantly restored the protein level of BimEL. Moreover, treatment with proteosome inhibitor resulted in mobility shift of BimEL, which was sensitive to phosphatase digestion. Furthermore, treatment of Sup-T1 cells with JNK inhibitor resulted in accumulation of BimEL, and pretreatment with JNK inhibitor restored sensitivity of Sup-T1 cells to etoposide-induced apoptosis, indicating that constitutive activation of the JNK pathway in Sup-T1 cells was responsible for promoting BimEL phosphorylation, and this may serve as a signal targeting BimEL to the proteosome for degradation. Altogether, our findings provide the first evidence that JNK activation correlates inversely with BimEL level by promoting its phosphorylation and degradation. This, in turn, reduces the sensitivity of T-ALL cells to chemotherapeutic agents.


1992 ◽  
Vol 175 (5) ◽  
pp. 1307-1316 ◽  
Author(s):  
N J Vasquez ◽  
J Kaye ◽  
S M Hedrick

To study the processes of thymic development, we have established transgenic mice expressing and alpha/beta T cell antigen receptor (TCR) specific for cytochrome c associated with class II major histocompatibility complex (MHC) molecules. The transgenic TCR chains are expressed by most of the thymocytes in these mice, and these cells have been shown to efficiently mature in association with Ek- and Ab-encoded class II MHC molecules. This report describes a characterization of the negative selection of these transgenic thymocytes in vivo that is associated with the expression of As molecules. Negative selection by As molecules appears to result in the deletion of a late stage of CD4/CD8 double-positive thymocytes in that there is a virtual absence of transgenic TCR bearing CD4 single-positive thymocytes. This phenotype is accompanied by the appearance of CD4/CD8 double-negative thymocytes and peripheral T cells that are functionally antigen reactive. The process of negative selection has also been investigated using an in vitro culture system. Upon presentation of cytochrome c by Eb-expressing nonthymic antigen-presenting cells, there occurs an antigen dose-dependent deletion of the majority of CD4/CD8 double-positive thymocytes. In contrast, presentation of Staphylococcal enterotoxin A by Eb in vitro results in minimal deletion of double-positive thymocytes. In addition, we use this in vitro model to examine the effects of cyclosporin A on negative selection. In contrast to its effects on mature T cells, and the findings of others in vivo, cyclosporin A does not inhibit antigen-induced deletion of double-positive thymocytes. Finally, a comparison of the antigen dose responses for thymocyte deletion and for peripheral T cell activation indicates that double-positive thymocyte recognition is more sensitive than mature T cells to antigen recognition.


1982 ◽  
Vol 155 (2) ◽  
pp. 508-523 ◽  
Author(s):  
LA Matis ◽  
PP Jones ◽  
DB Murphy ◽  
SM Hedrick ◽  
EA Lerner ◽  
...  

A series of experiments were performed to explore the role of complementing major histocompatability complex (MHC)-linked immune response Ir genes in the murine T cell proliferative response to the globular protein antigen pigeon cytochrome c. The functional equivalence of I-E-subregion-encoded, structurally homologous E(a) chains from different haplotypes bearing the serologic specificity Ia.7 was demonstrated by the complementation for high responsiveness to pigeon cytochrome c of F(1) hybrids between low responder B 10.A(4R) (I-A (k)) or B 10.S (I-A(8)) mice and four low responder E(a)- bearing haplotypes. Moreover, this Ir gene function correlated directly with both the ability of antigen-pulsed spleen cells from these same F(1) strains to stimulate pigeon cytochrome c-primed T cells from B10.A or B10.S(9R) mice, and with the cell surface expression of the two-chain Ia antigenic complex, A(e):E(a), bearing the conformational or combinatorial determinant recognized by the monoclonal anti-Ia antibody, Y-17. The B 10.PL strain (H-2(u)), which expresses an Ia.7-positive I-E- subregion-encoded E(a) chain, failed to complement with B10.A(4R) or B10.S mice in the response to pigeon cytochrome c. However, (B10.A(4R) × B10.PL)F(1) and (B10.S × B10.PL)F(1) mice do express A(k)(e):E(u)(a) and A(8)(e):E(u)(a) on their cell surface, although in reduced amounts relative to A(k,s)(e):E(k,d,p,r)(a) complexes found in corresponding F(1) strains. This quantitative difference in Ia antigen expression correlated with a difference in the ability to present pigeon cytochrome c to B 10.A and B 10.S(9R) long-term T cell lines. Thus, (B10.A(4R) × B10.PL)F(1) spleen cells required a 10-fold higher antigen dose to induce the same stimulation as (B10.A(4R) × B10.D2)F(1) spleen cells. In addition, the monoclonal antibody, Y-17, which reacts with A(e):E(a) molecules of several strains, had a greater inhibitory effect on the proliferative response to pigeon cytochrome c of B10.A T cells in the presence of (B10.A(4R) X B10.PL)F(1) spleen cells than in the presence of (B10.A(4R) X B10.D2)F(1) spleen cells. These functional data, in concert with the biochemical and serological data in the accompanying report, are consistent with the molecular model for Ir gene complementation in which appropriate two-chain Ia molecules function at the antigen-presenting cell (APC) surface as restriction elements. Moreover, they clearly demonstrate that the magnitude of the T cell proliferative response is a function of both the concentration of nominal antigen and of the amount of Ia antigen expressed on the APC. Finally, the direct correlation of a quantitative deficiency in cell surface expression of an Ia antigen with a corresponding relative defect in antigen-presenting function provides strong independent evidence that the I-region-encoded Ia antigens are the products of the MHC-linked Ir genes.


Sign in / Sign up

Export Citation Format

Share Document