Study of Oligosaccharide-Lectin Interaction by Various Nuclear Magnetic Resonance (NMR) Techniques and Computational Methods

1993 ◽  
pp. 105-116 ◽  
Author(s):  
H. C. Siebert ◽  
R. Kaptein ◽  
J. F. G. Vliegenthart
2020 ◽  
Vol 17 (2) ◽  
pp. 185-196
Author(s):  
Shyamal K. Jash ◽  
Dilip Gorai ◽  
Lalan C. Mandal ◽  
Rajiv Roy

Flavonoids are considered as a significant class of compounds among the natural products, exhibiting a variety of structural skeletons as well as multidirectional biological potentials. In structural elucidations of natural products, Nuclear Magnetic Resonance (NMR) spectroscopy has been playing a vital role; the technique is one of the sharpest tools in the hands of natural products chemists. The present resume deals with hard-core applications of such spectral technique, particularly in structural elucidation of flavonoids; different NMR techniques including 1H-NMR, 13C-NMR, and 2D-NMR [viz. 1H-1H COSY, COLOC, HMBC, HMQC] are described in detail.


2020 ◽  
Vol 34 (S1) ◽  
pp. 1-1
Author(s):  
Claudia Walker ◽  
Elisabeth Kan ◽  
Faith Davis ◽  
Jonathan Catazaro ◽  
Michael Summers

2010 ◽  
Vol 7 (6) ◽  
pp. 524 ◽  
Author(s):  
Jimmy Yuk ◽  
Jennifer R. McKelvie ◽  
Myrna J. Simpson ◽  
Manfred Spraul ◽  
André J. Simpson

Environmental context The application of metabolomics from an environmental perspective depends on the analytical ability to discriminate minute changes in the organism resulting from exposure. In this study, 1-D and 2-D Nuclear Magnetic Resonance (NMR) experiments were examined to characterise the earthworm’s metabolic response to an organochlorine pesticide. 2-D NMR showed considerable improvement in discriminating exposed worms from controls and in identifying the metabolites responsible. This study demonstrates the potential of 2-D NMR in understanding subtle biochemical responses resulting from environmental exposure. Abstract Nuclear Magnetic Resonance (NMR) based metabolomics is a powerful approach to monitoring an organism’s metabolic response to environmental exposure. However, the discrimination between exposed and control groups, depends largely on the NMR technique chosen. Here, three 1-D NMR and three 2-D NMR techniques were investigated for their ability to discriminate between control earthworms (Eisenia fetida) and those exposed to a sub-lethal concentration of a commonly occurring organochlorine pesticide, endosulfan. Partial least-squares discriminant analysis found 1H–13C Heteronuclear Single Quantum Coherence (HSQC) spectroscopy to have the highest discrimination with a MANOVA value (degree of separation) three orders lower than any of the 1-D and 2-D NMR techniques. HSQC spectroscopy identified alanine, leucine, lysine, glutamate, glucose and maltose as the major metabolites of exposure to endosulfan, more than all the other techniques combined. HSQC spectroscopy in combination with a shorter 1-D experiment may prove to be an effective tool for the discrimination and identification of significant metabolites in organisms under environmental stress.


1987 ◽  
Vol 41 (7) ◽  
pp. 1194-1199 ◽  
Author(s):  
David L. Ashley ◽  
Elizabeth R. Barnhart ◽  
Donald G. Patterson ◽  
Robert H. Hill

Nuclear magnetic resonance (NMR) techniques are used to determine the chlorination pattern on a number of chlorinated pyrenes and pyrene-addition products. Determining chemical shifts, couplings, and longitudinal relaxation rates makes the unequivocal assignment of these molecules possible. Chlorination under the conditions described here were found to follow the normal orientation rules for pyrene. Spectral parameters obtained from these molecules are consistent enough to allow further application to unknown compounds. This should simplify assigning NMR spectra to other chlorinated pyrene standards.


2017 ◽  
Vol 74 ◽  
pp. 1346-1360 ◽  
Author(s):  
Mingjun Yang ◽  
Zheng Rong Chong ◽  
Jianan Zheng ◽  
Yongchen Song ◽  
Praveen Linga

2020 ◽  
Vol 50 (1) ◽  
pp. 493-520
Author(s):  
Po-Hsiu Chien ◽  
Kent J. Griffith ◽  
Haoyu Liu ◽  
Zhehong Gan ◽  
Yan-Yan Hu

Establishing structure–property correlations is of paramount importance to materials research. The ability to selectively detect observable magnetization from transitions between quantized spin states of nuclei makes nuclear magnetic resonance (NMR) spectroscopy a powerful probe to characterize solids at the atomic level. In this article, we review recent advances in NMR techniques in six areas: spectral resolution, sensitivity, atomic correlations, ion dynamics, materials imaging, and hardware innovation. In particular, we focus on the applications of these techniques to materials research. Specific examples are given following the general introduction of each topic and technique to illustrate how they are applied. In conclusion, we suggest future directions for advanced solid-state NMR spectroscopy and imaging in interdisciplinary research.


1987 ◽  
Vol 65 (11) ◽  
pp. 1481-1485 ◽  
Author(s):  
D. F. Brewer

Superflow of 3He–B in a channel can be observed by nuclear magnetic resonance (nmr) techniques, the simplest arrangement being one in which the magnetic field is perpendicular to the flow. Above a certain critical velocity, the transverse resonance frequency shifts away from the Larmor frequency, and the velocity gives a value of the ratio of the flow coupling constant to the dipole coupling constant, which is found to differ substantially from theoretical prediction. The nmr shifts can be used to detect persistent currents in a doubly connected geometry, and some preliminary observations are described as well as an analysis of the way in which currents with multiply quantized circulation may be set up.


Sign in / Sign up

Export Citation Format

Share Document