Adsorption Processes on Semiconductor and Dielectric Surfaces I

Author(s):  
Vsevolod F. Kiselev ◽  
Oleg V. Krylov
2005 ◽  
Vol 879 ◽  
Author(s):  
Scott K. Stanley ◽  
John G. Ekerdt

AbstractGe is deposited on HfO2 surfaces by chemical vapor deposition (CVD) with GeH4. 0.7-1.0 ML GeHx (x = 0-3) is deposited by thermally cracking GeH4 on a hot tungsten filament. Ge oxidation and bonding are studied at 300-1000 K with X-ray photoelectron spectroscopy (XPS). Ge, GeH, GeO, and GeO2 desorption are measured with temperature programmed desorption (TPD) at 400-1000 K. Ge initially reacts with the dielectric forming an oxide layer followed by Ge deposition and formation of nanocrystals in CVD at 870 K. 0.7-1.0 ML GeHx deposited by cracking rapidly forms a contacting oxide layer on HfO2 that is stable from 300-800 K. Ge is fully removed from the HfO2 surface after annealing to 1000 K. These results help explain the stability of Ge nanocrystals in contact with HfO2.


2019 ◽  
Vol 95 (3) ◽  
pp. 45-51
Author(s):  
P.A. Abdurazova ◽  
◽  
Sh.T. Koshkarbayeva ◽  
M.S. Satayev ◽  
N.O. Dzhakipbekova ◽  
...  
Keyword(s):  

2013 ◽  
Vol 5 (3) ◽  
pp. 153-173 ◽  
Author(s):  
Georgina Laredo ◽  
Fernando Trejo-Zarraga ◽  
Federico Jimenez-Cruz ◽  
Jose Garcia-Gutierrez

2021 ◽  
Vol 13 (15) ◽  
pp. 8552
Author(s):  
Vahid Alimohammadi ◽  
Mehdi Maghfouri ◽  
Delaram Nourmohammadi ◽  
Pejman Azarsa ◽  
Rishi Gupta ◽  
...  

Clean water is a vital need for all living creatures during their lifespan. However, contaminated stormwater is a major issue around the globe. A wide range of contaminants, including heavy metals, organic and inorganic impurities, has been discovered in stormwater. Some commonly utilized methods, such as biological, physical and chemical procedures, have been considered to overcome these issues. However, these current approaches result in moderate to low contaminant removal efficiencies for certain classes of contaminants. Of late, filtration and adsorption processes have become more featured in permeable concretes (PCs) for the treatment of stormwater. As nanoparticles have vast potential and unique characterizations, such as a higher surface area to cure polluted stormwater, employing them to improve permeable concretes’ capabilities in stormwater treatment systems is an effective way to increase filtration and adsorption mechanisms. The present study reviews the removal rate of different stormwater contaminants such as heavy metals, organic and other pollutants using nanoparticle-improved PC. The application of different kinds of nanomaterials in PC as porous media to investigate their influences on the properties of PC, including the permeability rate, compressive strength, adsorption capacity and mix design of such concrete, was also studied. The findings of this review show that different types of nanomaterials improve the removal efficiency, compressive strength and adsorption capacity and decrease the infiltration rate of PC during the stormwater treatment process. With regard to the lack of comprehensive investigation concerning the use of nanomaterials in PC to treat polluted stormwater runoff, this study reviews 242 published articles on the removal rate of different stormwater contaminants by using PC improved with nanoparticles.


Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1917
Author(s):  
Guangpu Zhang ◽  
Rong Wo ◽  
Zhe Sun ◽  
Gazi Hao ◽  
Guigao Liu ◽  
...  

A magnetic metal−organic frameworks adsorbent (Fe3O4@MIL-53(Al)) was prepared by a typical solvothermal method for the removal of bisphenol A (BPA), tetracycline (TC), congo red (CR), and methylene blue (MB). The prepared Fe3O4@MIL-53(Al) composite adsorbent was well characterized by scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray diffraction (XRD), and fourier transform infrared spectrometer (FTIR). The influence of adsorbent quantity, adsorption time, pH and ionic strength on the adsorption of the mentioned pollutants were also studied by a UV/Vis spectrophotometer. The adsorption capacities were found to be 160.9 mg/g for BPA, 47.8 mg/g for TC, 234.4 mg/g for CR, 70.8 mg/g for MB, respectively, which is superior to the other reported adsorbents. The adsorption of BPA, TC, and CR were well-fitted by the Langmuir adsorption isotherm model, while MB followed the Freundlich model, while the adsorption kinetics data of all pollutants followed the pseudo-second-order kinetic models. The thermodynamic values, including the enthalpy change (ΔH°), the Gibbs free energy change (ΔG°), and entropy change (ΔS°), showed that the adsorption processes were spontaneous and exothermic entropy-reduction process for BPA, but spontaneous and endothermic entropy-increasing processes for the others. The Fe3O4@MIL-53(Al) was also found to be easily separated after external magnetic field, can be a potential candidate for future water treatment.


Sign in / Sign up

Export Citation Format

Share Document