A Modulus for the Evaluations of the Dynamic Magnetostriction as a Measured Quantity of the 3MA Method

Author(s):  
R. Koch ◽  
P. Höller
Keyword(s):  
Metrologiya ◽  
2020 ◽  
pp. 3-15
Author(s):  
Rustam Z. Khayrullin ◽  
Alexey S. Kornev ◽  
Andrew A. Kostoglotov ◽  
Sergey V. Lazarenko

Analytical and computer models of false failure and undetected failure (error functions) were developed with tolerance control of the parameters of the components of the measuring technique. A geometric interpretation of the error functions as two-dimensional surfaces is given, which depend on the tolerance on the controlled parameter and the measurement error. The developed models are applicable both to theoretical laws of distribution, and to arbitrary laws of distribution of the measured quantity and measurement error. The results can be used in the development of metrological support of measuring equipment, the verification of measuring instruments, the metrological examination of technical documentation and the certification of measurement methods.


2017 ◽  
Vol 919 (1) ◽  
pp. 7-12
Author(s):  
N.A Sorokin

The method of the geopotential parameters determination with the use of the gradiometry data is considered. The second derivative of the gravitational potential in the correction equation on the rectangular coordinates x, y, z is used as a measured variable. For the calculated value of the measured quantity required for the formation of a free member of the correction equation, the the Cunningham polynomials were used. We give algorithms for computing the second derivatives of the Cunningham polynomials on rectangular coordinates x, y, z, which allow to calculate the second derivatives of the geopotential at the rectangular coordinates x, y, z.Then we convert derivatives obtained from the Cartesian coordinate system in the coordinate system of the gradiometer, which allow to calculate the free term of the correction equation. Afterwards the correction equation coefficients are calculated by differentiating the formula for calculating the second derivative of the gravitational potential on the rectangular coordinates x, y, z. The result is a coefficient matrix of the correction equations and corrections vector of the free members of equations for each component of the tensor of the geopotential. As the number of conditional equations is much more than the number of the specified parameters, we go to the drawing up of the system of normal equations, from which solutions we determine the required corrections to the harmonic coefficients.


2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
T Yoshida ◽  
A Shibata ◽  
A Tanihata ◽  
H Hayashi ◽  
Y Ichikawa ◽  
...  

Abstract Background Skeletal muscle atrophy is an independent prognostic predictor for patients with chronic heart failure, and the concept of sarcopenia is drawing attention. Furthermore, the importance of not only muscle mass but also intramuscular fat (IMF) has been pointed out. However, there is a lack of consensus on the implications of ectopic fat for the prognosis in patients with non-ischemic cardiomyopathy. Purpose We investigated whether ectopic fat in the thigh affects the prognosis with non-ischemic cardiomyopathy. Methods We recruited 105 patients who were diagnosed with non-ischemic cardiomyopathy by cardiac catheterization and echocardiographic date between September 2017 and November 2019. Finally 73 patients with reduced EF (EF 40% or less) enrolled in this prospective study. Functional status was evaluated by using cardiopulmonary exercise test at baseline. All patients were measured quantity of epicardial fat and thigh IMF percentage (%IMF) using computed tomography scan. Demographic, laboratory and echocardiographic date were collected from the patients' medical records. Clinical endpoints were unexpected readmission. Results During the follow-up period 18 patients had adverse events. The %IMF was significantly higher in the group with adverse events than without (5.57±5.70 and 3.02±2.44%, respectively; p<0.01). Spearman correlation coefficient analysis showed a modest correlation between %IMF and lower limb extension strength (Spearman r=−0.280; p=0.0315), but there was no significant correlation between %IMF and exercise tolerance such as anaerobic threshold and peak oxygen uptake. Patients were divided into 2 groups according to the median values of %IMF. Kaplan-Meier analysis demonstrated that events were significantly higher in the high %IMF group (log-rank p=0.033). Multivariate Cox regression analysis adjusted for left ventricular end-diastolic diameter and peak ventricular oxygen consumption found %IMF as an independent factor of adverse events (hazard ratio 1.545; 95% confidential interval 1.151–2.087; p=0.004). Conclusions In non-ischemic cardiomyopathy patients with reduced EF, %IMF may have important adverse consequences such as increased cardiac-related events. Kaplan-Meier curves Funding Acknowledgement Type of funding source: None


MRS Bulletin ◽  
1999 ◽  
Vol 24 (1) ◽  
pp. 41-45 ◽  
Author(s):  
M.E. Dávila ◽  
D. Arvanitis ◽  
J. Hunter Dunn ◽  
N. Mårtensson ◽  
P. Srivastava ◽  
...  

Circularly polarized x-ray radiation is attracting increasing interest as a tool for the characterization of the electronic, magnetic, and chiral properties of low-dimensional structures. Using circular light (with electric field vector parallel to the orbital plane), a dependence of the measured quantity by changing either the orientation of the light polarization or the magnetization is indicative of the existence of magnetic circular dichroism. It can be observed in x-ray absorption spectroscopy (XAS), in which the photon energy is scanned through an absorption threshold exciting a core electron into an unoccupied valence state using circularly polarized light. Synchrotron radiation sources have made this technique possible. It can also be observed in photo-emission spectroscopy from core and valence levels. Here we focus on magnetic circular x-ray dichroism (MCXD) in XAS as an element-specific tool to investigate magnetic properties of ultrathin films in situ. The application of magneto-optical sum rules enables the determination of the orbital and spin magnetic moments per atom from XAS spectra, as well as the easy magnetization direction.MCXD-based magnetometry in XAS is extensively used by measuring the L absorption edges of 3d-transition metals, where large intensity changes (up to 60%) of the L-edge white lines are observed upon reversal of either the sample magnetization or the light helicity. The high magnetic contrast obtained, combined with the elemental specificity of the technique, allows for the study of very dilute samples such as ultrathin films. We first concentrate on the selection rules governing MCXD in XAS.


Author(s):  
A. Stamatis ◽  
N. Aretakis ◽  
K. Mathioudakis

An approach for identification of faults in blades of a gas turbine, based on physical modelling is presented. A measured quantity is used as an input and the deformed blading configuration is produced as an output. This is achieved without using any kind of “signature”, as is customary in diagnostic procedures for this kind of faults. A fluid dynamic model is used in a manner similar to what is known as “inverse design methods”: the solid boundaries which produce a certain flow field are calculated by prescribing this flow field. In the present case a signal, corresponding to the pressure variation on the blade-to-blade plane, is measured. The blade cascade geometry that has produced this signal is then produced by the method. In the paper the method is described and applications to test cases are presented. The test cases include theoretically produced faults as well as experimental cases, where actual measurement data are shown to produce the geometrical deformations which existed in the test engine.


2011 ◽  
Vol 180 ◽  
pp. 185-193 ◽  
Author(s):  
Aleksy Cwalina ◽  
Marcin Zacharewicz

In the article assumptions of the developed non-invasive method of evaluation technical condition of selected structural elements of the ship's diesel-electric set at limited monitoring susceptibility, when the engine is not equipped with indicator valves, are discussed. The method is based on simultaneous measurements of phase-to-phase voltage of the synchronous generator, exhaust gas pressures in the exhaust manifold, and vibration accelerations of some parts of the set. To the purpose of the accomplishment all measurements of energetic parameters at the same time, it turned out to be necessary to design and construct the measured quantity converter. In the paper requirements in relation to such a converter, technical project, and representative results of measurements conducted on a real object – diesel-electric set type ZE400/52 – are presented.


Author(s):  
Oksana Lozovenko ◽  
Yevgeny Sokolov

The authors continue to report about results they have obtained in the process of creating a special introductory one-semester Laboratory Physics course «Search for Physics laws». It is known that the teaching experience and the results of the performed tests show that most students do not acquire the basic skills for conducting an experimental research. This course was built on the basis of the algorithm of systematic construction of students’ skills for carrying out an experimental research. The authors have used Galperin’s stepwise teaching procedure which was developed on the assumption that learning any kind of knowledge involves different kinds of actions. The authors have analysed different ways of how to expound the basic ideas of data analysis, and shown their connection with the point, syncretic and training-interval paradigms. Action diagrams are provided for each type of expounding. As an example of using the training-interval paradigm for teaching first-year students of a technical university, a specially designed lab session is presented in the article. The topic of the session is “The concept of a confidence interval”. Laboratory Work 1 “The Buffon-de Morgan Experiment”. This lab session meets several important requirements: a) the number of computations is minimised; b) a directly measurable quantity is considered; c) students are provided with a “fulcrum” in the form of a priori known true value of a quantity. A general view on measuring physics quantities is summarised in four quite unexpected for students “unpleasant axioms”: 1) none of measured values coincides with the true value of a quantity; 2) the mean of measured values does not coincide with the true value of a quantity; 3) even if, by a lucky chance, one of measured values or the mean coincided with the true value of a quantity, we would never know about it; 4) a confidence interval catches the true value of a measured quantity only in 68% of cases. The authors claim that the presented lab lesson allows demonstrating the equity of these “axioms” clearly and vividly, and that the organised laboratory sessions in the new way are significantly more successful in improving students’ basic skills of error analysis than traditional laboratory sessions.


2017 ◽  
Vol 17 ◽  
pp. 236-245
Author(s):  
V. V. Kozhevnikov

Today one of the priority problems is receiving an accreditation certificate under the international standard ISO/IEC 17025:2006 by measurement laboratories of Expert service subdivision of the Ministry of Internal Affairs of Ukraine. One of the requirements which is shown to the accredited testing laboratories, is a presence of uncertainty estimation procedure and ability to apply it. As the ballistic researches are one of the important directions of researches which are carried out in the expert subdivisions, therefore the paper is devoted to the consideration ofa question of uncertainty calculation in such measurements. In the mathematical statistics two types of paramètres which characterize dispersion of not correlated random variables are known: a root-mean-square deviation and a confidential interval. As the characteristics of uncertainty they are applied under the title standard and expanded uncertainty. An elementary estimation of measurements result and its uncertainty is carried out in such an order: description of the measured quantity; revealing of uncertainty sources; quantitative description uncertainty constituents (there are estimated uncertainty constituents which can be received a posteriori or a priori); calculation of standard uncertainty of each source, total standard uncertainty and expanded uncertainty. A posterior estimation is possible only in the case of carrying out multiple observations of the measured quantity (standard uncertainty of type A). An a priori estimation is carried out when multiple observations are not performed. In this case it’s necessary to use the information received from the measurements performed before, from the passport data on the facilities ofmeasuring technics orfrom reference books (standard uncertainty of type B). Short consideration of uncertainty concept, elucidation of the basic stages measurements result estimation and its uncertainty gives the chance to transform the theoretical knowledge into practical application of uncertainty estimation on examples of measurements uncertainty calculation during carrying out ballistic ammunition researches by two different ways.


Sign in / Sign up

Export Citation Format

Share Document