Soil Liquefaction: Mechanism and Assessment of Liquefaction Susceptibility

Author(s):  
Roberto Cudmani
2011 ◽  
Vol 11 (1) ◽  
pp. 1-9 ◽  
Author(s):  
P. Samui ◽  
T. G. Sitharam

Abstract. This study describes two machine learning techniques applied to predict liquefaction susceptibility of soil based on the standard penetration test (SPT) data from the 1999 Chi-Chi, Taiwan earthquake. The first machine learning technique which uses Artificial Neural Network (ANN) based on multi-layer perceptions (MLP) that are trained with Levenberg-Marquardt backpropagation algorithm. The second machine learning technique uses the Support Vector machine (SVM) that is firmly based on the theory of statistical learning theory, uses classification technique. ANN and SVM have been developed to predict liquefaction susceptibility using corrected SPT [(N1)60] and cyclic stress ratio (CSR). Further, an attempt has been made to simplify the models, requiring only the two parameters [(N1)60 and peck ground acceleration (amax/g)], for the prediction of liquefaction susceptibility. The developed ANN and SVM models have also been applied to different case histories available globally. The paper also highlights the capability of the SVM over the ANN models.


2021 ◽  
Author(s):  
Mahmood Ahmad ◽  
Xiaowei Tang ◽  
Feezan Ahmad ◽  
Marijana Hadzima-Nyarko ◽  
Ahsan Nawaz ◽  
...  

The paper develops a framework to analyze the interactions among seismic soil liquefaction significant factors using the interpretive structural model (ISM) approach based on cone penetration test. To identify the contextual relationships among the significant factors, systematic literature review approach was used bearing in mind the selection principle. Since multiple factors influence seismic soil liquefaction, determining all factors in soil liquefaction would be extremely difficult, as even a few seismic soil liquefaction factors are not easy to deal with. This study highlighted two main characteristics of seismic soil liquefaction factors. First, the seismic soil liquefaction factors–peak ground acceleration F2 (amax), equivalent clean sand penetration resistance F5 (qc1Ncs), and thickness of soil layer F11 (Ts) influenced soil liquefaction directly and were located at level 2 (top level) in the ISM model, meaning they require additional seismic soil liquefaction factors except thickness of soil layer F11 (Ts) to collaboratively impact on soil liquefaction potential. The multilevel hierarchy reveals that depth of soil deposit F10 (Ds) is formed the base of ISM hierarchy. Secondly, Matrice d’impacts croisés multiplication appliqués à un classement (MICMAC) analysis has been employed for evaluating these identified factors in accordance with driving power and dependence power. Factors with a higher driving power should be given special consideration. Autonomous soil liquefaction factors have no reliance on other soil liquefaction factors and interfere less. In order to identify the significant factors that affect seismic soil liquefaction susceptibility, the model built in this study clearly illustrates the complex relationships between factors and demonstrates the direct and indirect relationships.


2020 ◽  
Vol 22 (1) ◽  
pp. 1-5
Author(s):  
Heriansyah Putra ◽  
Hideaki Yasuhara ◽  
Naoki Kinoshita ◽  
Muhammad Fauzan

The applicability of bio-chemical grouting as the environmentally friendly and economically method for liquefaction remediation was evaluated. Several combinations of organic and in-organic precipitations methods were conducted to obtain the optimum grouting solution. Organic precipitation method employs a bio-agent of urease enzyme to dissociate urea into ammonium and carbonate ions. The produced carbonate ions are precipitated as calcite crystals in the presence of calcium ions. Meanwhile, the in-organic methods were performed using chemical compounds only, without the bio-agent. Unconfined compressive strength (UCS) tests were performed to evaluate the applicability of the grouting solutions for improving the soil strength. Grouting solution is injected into the prepared sand samples. The sand samples with a relative density of 50% were treated with one and two PV for 3-day curing times. The experimental results showed that the organic precipitation method produced the high precipitated amount and resulted in the significant improvement in the strength of the treated sand. The presence of the precipitated materials within the grains of soil generated the strength of 272 kPa. The results of this study have elucidated that the organic precipitation method composed of calcium chloride, magnesium sulfate, urea and enzyme of urease may be an alternative soil-improvement technique to prevent the liquefaction susceptibility.


Author(s):  
Г.П. Ганапатхи ◽  
В.Б. Заалишвили ◽  
Д.А. Мельков ◽  
Б.В. Дзеранов ◽  
С.С. Чандрашекаран

Урбанизированные территории, сложенные аллювиальными грунтами, характеризуются уязвимостью к их разжижению даже при землетрясениях средней величины. Разжижение является мерой склонности водонасыщенных отложений к уплотнению во время землетрясения и, таким образом, создает давление поровой воды, достаточное для возможной нестабильности грунта или его разрушения. Здания, построенные на подобных разжижаемых грунтах, весьма уязвимы при колебаниях, обусловленных землетрясением. Город Ченнаи в Индии является одним из самых густонаселенных городов в мире. Застройка, на его большей части, состоит из тесно расположенных высотных зданий. Город находится в пределах умеренной сейсмической зоны и по классификации Бюро Индийского стандарта здесь можно ожидать максимальную величину землетрясения с магнитудой 6,9. Большая часть города, покрытая молодыми аллювиальными грунтами с неглубоким уровнем грунтовых вод, весьма уязвимая при землетрясении, никак не выделяется по внешним признакам. В связи с этим для оценки подверженности грунтов разжижению, в городе проведены исследования на основе изучения геотехнических параметров. Результаты исследования показывают, что более 60% территории городской площади Ченнаи подвержено разжижению. Город Владикавказ в России – один из наиболее плотно населенных городов на Северном Кавказе. Несмотря на отсутствие исторических данных по разжижению грунтов на этой территории, относительно недавно урбанизированной (по крайней мере, в 1810 г.), здесь присутствуют грунты с возможным проявлением явления разжижения при сильных землетрясениях. При этом необходимо учитывать, что непосредственно в южной части города расположен Владикавказский разлом с ожидаемым сейсмическим потенциалом Mmax=7,1. В сотрудничестве с индийскими коллегами метод оценки подверженности грунтов разжижению был адаптирован и применен для территории г. Владикавказа. В то же время в отличие от метода пенетрации (SPT), при исследованиях грунтов Владикавказа использовался более традиционный для России подход, и расчеты были сделаны на основе учета величины скоростей поперечных волн в грунтах. В результате расчетов было установлено, что почти 20% территории города Владикавказа сложено грунтами, подверженных разжижению. Настоящее исследование может заставить градостроительные службы и лиц, принимающих решения, а также аварийно-спасательные службы в их будущей деятельности по планированию развития городских территорий уделять большее внимание подверженности грунтов разжижению. Urban areas lying in the alluvial soil generally pose to threat of liquefaction even for moderate magnitude earthquakes. Liquefaction is the measure of vulnerability of saturated sediment to compact during earthquake shaking and thus generate pore water pressures sufficient to cause possible ground instability or failure. The buildings which are constructed over the liquefiable soil are more vulnerable during seismic shaking for a potential earthquake. The Chennai city of India is one of the most densely populated cities in the world, which consist of densely constructed high rise buildings in many parts. The city is under moderate seismic zone as classified by Bureau of Indian Standard where one can expected maximum magnitude of 6,9. The major part of the city covered by the Recent Alluvial soil with shallow water table, which is more vulnerable during earthquake shaking and quiet enough to trigger liquefaction. In this regard a study carried out to understand the liquefaction susceptibility of soil in the city using geotechnical parameters. Also the study reveals spatially 60% of the area is prone to liquefaction. Vladikavkaz city of Russia is also one of the most densely populated in the North Caucasus. Despite on the absence of historical data on liquefaction on this territory, there are soil conditions in new regions with a possible liquefaction behavior during strong earthquakes. Especially taking into account of Vladikavkaz seismic fault potential of Mmax=7,1. In cooperation with Indian colleagues liquefaction susceptibility assessment method was adopted and applied for Vladikavkaz city. Seismic refraction survey is wide used in Russia rather than SPT and calculations were made on the basis size of shear velocity Vs. As a result 20% of the territory of Vladikavkaz city is liquefiable. The present study can be an eye opening for urban planners and decision makers and emergency responders for future developmental planning activity within the city


2008 ◽  
Vol 8 (4) ◽  
pp. 641-649 ◽  
Author(s):  
A. Yalcin ◽  
C. Gokceoglu ◽  
H. Sönmez

Abstract. Turkey having a long history of large earthquakes have been subjected to progressive adjacent earthquakes. Starting in 1939, the North Anatolian Fault Zone (NAFZ) produced a sequence of major earthquakes, of which the Mw 7.4 earthquake that struck western Turkey on 17 August 1999. Following the Erzincan earthquake in 1992, the soil liquefaction has been crucial important in the agenda of Turkey. Soil liquefaction was also observed widely during the Marmara and the Düzce Earthquake in 1999 (Sönmez, 2003). Aksaray city center locates in the central part of Turkey and the Tuzgolu Fault Zone passes through near the city center. The fault zone has been generated to moderate magnitude earthquakes. The geology of the Aksaray province basin contains Quaternary alluvial deposits formed by gravel, sand, silt, and clay layers in different thickness. The Tuzgolu Fault Zone (TFZ) came into being after the sedimetation of alluvial deposits. Thus, the fault is younger from lithological units and it is active. In addition, the ground water level is very shallow, within approximately 3 m from the surface. In this study, the liquefaction potential of the Aksaray province is investigated by recent procedure suggested by Sonmez and Gokceoglu (2005). For this purpose, the liquefaction susceptibility map of the Aksaray city center for liquefaction is presented. In the analysis, the input parameters such as the depth of the upper and lower boundaries of soil layer, SPT-N values, fine content, clay content and the liquid limit were used for all layers within 20 m from the surface. As a result, the category of very high susceptibility liquefaction class was not observed for the earthquake scenario of Ms=5.2, 4.9% of the study area has high liquefaction susceptibility. The percentage of the moderately, low, and very low liquefied areas are 28.2%, 30.2%, and 36.3%, respectively. The rank of non-liquefied susceptibility area is less than 1%.


1983 ◽  
Vol 109 (3) ◽  
pp. 281-300 ◽  
Author(s):  
Kandiah Arulanandan ◽  
A. Anandarajah ◽  
A. Abghari

Sign in / Sign up

Export Citation Format

Share Document