Chemical Calculation in the Laboratory

Author(s):  
Oksana Ableitner
Keyword(s):  
2017 ◽  
Vol 137 (11) ◽  
pp. 626-631 ◽  
Author(s):  
Yuki Fuchi ◽  
Ryota Nakasako ◽  
Masahiro Kozako ◽  
Masayuki Hikita ◽  
Nobuhito Kamei

1980 ◽  
Vol 45 (2) ◽  
pp. 475-481
Author(s):  
Slavomír Bystrický ◽  
Tibor Sticzay ◽  
Igor Tvaroška

Conformational mobility of tetruloses, 2-pentuloses, D-3-pentulose and 4-deoxy-L-pentulose was studied by measuring temperature dependences of CD spectra in the region +40°C to -140°C in a methanol-ethanol (1:4) mixture. The changes in spectra reflect the population of rotamers around bonds to the carbonyl chromophore. The most stable conformers were determined by PCILO quantum chemical calculation.


1995 ◽  
Vol 60 (9) ◽  
pp. 1429-1434
Author(s):  
Martin Breza

Using semiempirical CNDO-UHF method the adiabatic potential surface of 2[Cu(OH)6]4- complexes is investigated. The values of vibration and vibronic constants for Eg - (a1g + eg) vibronic interaction attain extremal values for the optimal O-H distance. The Jahn-Teller distortion decreases with increasing O-H distance. The discrepancy between experimentally observed elongated bipyramid of [Cu(OH)6]4- in Ba2[Cu(OH)6] and the compressed one obtained by quantum-chemical calculation is explainable by hydrogen bonding of the axial hydroxyl group.


Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1298
Author(s):  
Farooq Aslam ◽  
Zhen Li ◽  
Guanghao Qu ◽  
Yang Feng ◽  
Shijun Li ◽  
...  

To date, breakdown voltage is an underlying risk to the epoxy-based electrical high voltage (HV) equipment. To improve the breakdown strength of epoxy resin and to explore the formation of charge traps, in this study, two types of polyhedral oligomeric silsesquioxane (POSS) fillers are doped into epoxy resin. The breakdown voltage test is performed to investigate the breakdown strength of neat epoxy and epoxy/POSS composites. Electron traps that play an important role in breakdown strength are characterized by thermally stimulated depolarized current (TSDC) measurement. A quantum chemical calculation tool identifies the source of traps. It is found that adding octa-glycidyl POSS (OG-POSS) to epoxy enhances the breakdown strength than that of neat epoxy and epoxycyclohexyl POSS (ECH-POSS) incorporated epoxy. Moreover, side groups of OG-POSS possess higher electron affinity (EA) and large electronegativity that introduces deep-level traps into epoxy resin and restrain the electron transport. In this work, the origin of traps has been investigated by the simulation method. It is revealed that the functional properties of POSS side group can tailor an extensive network of deep traps in the interfacial region with epoxy and enhance the breakdown strength of the epoxy/POSS nanocomposite.


Molecules ◽  
2021 ◽  
Vol 26 (2) ◽  
pp. 442
Author(s):  
Oleg V. Mikhailov

As known, the concept of “cluster” is collective and includes substances that are quite diverse in composition and chemical structure [...]


Sign in / Sign up

Export Citation Format

Share Document