The Development of Male- and Female-Specific Sexual Behavior in Drosophila melanogaster

1998 ◽  
pp. 120-148 ◽  
Author(s):  
Laurie Tompkins
2020 ◽  
Author(s):  
Crystal M. Vincent ◽  
Marc S. Dionne

AbstractMale and female animals exhibit differences in infection outcomes. One possible source of sexually dimorphic immunity is sex-specific costs of immune activity or pathology, but little is known about the independent effects of immune-induced versus microbe-induced pathology, and whether these may differ for the sexes. Here, through measuring metabolic and physiological outputs in wild-type and immune-compromised Drosophila melanogaster, we test whether the sexes are differentially impacted by these various sources of pathology and identify a critical regulator of this difference. We find that the sexes exhibit differential immune activity but similar bacteria-derived metabolic pathology. We show that female-specific immune-inducible expression of PGRP-LB, a negative regulator of the Imd pathway, enables females to reduce immune activity in response to reductions in bacterial numbers. In the absence of PGRP-LB, females are more resistant of infection, confirming the functional importance of this regulation and suggesting that female-biased immune restriction comes at a cost.


Genetics ◽  
1989 ◽  
Vol 123 (3) ◽  
pp. 535-541 ◽  
Author(s):  
L Tompkins ◽  
S P McRobert

Abstract We have shown that the Sex-lethal (Sxl) gene, which controls morphological aspects of sex determination in Drosophila melanogaster, also regulates sexual behavior. Chromosomal males that are hemizygous for a deletion of the entire Sxl locus perform normal courtship and synthesize the two courtship-inhibiting pheromones that normal males make. However, ectopic expression of female-specific Sex-lethal gene products drastically alters chromosomal males' ability to perform and elicit courtship and increases the probability that they will synthesize a courtship-stimulating pheromone or fail to synthesize one of the inhibitory pheromones. These observations suggest that male sexual behavior is a consequence of the Sxl gene's being functionally inactive in haplo-X flies.


Genetics ◽  
1985 ◽  
Vol 111 (1) ◽  
pp. 89-96
Author(s):  
Scott P McRobert ◽  
Laurie Tompkins

ABSTRACT We have identified the effects of genes that regulate sex determination on female-specific tissues in the abdomen that produce sex pheromones and parts of the central nervous system that function when a male performs courtship. To do this, we monitored the sexual behaviors of flies with mutations in the transformer (tra), doublesex (dsx) and intersex (ix) genes. Except for tra, which transforms diplo-X flies so that they look and function like normal males, these mutations do not have the same effect on pheromone-producing tissues and the central nervous system as they do on the appearance of the fly. The dsx and ix mutations, which make diplo-X-flies look like intersexes, do not transform the flies so that they can perform courtship, suggesting that these genes do not regulate the development of sex-specific parts of the central nervous system. Conversely, the ix mutation, which has no effect on the appearance of haplo-X flies, makes the flies sexually attractive and impairs their ability to perform courtship, which implies that the ix gene is active in internal tissues of males.


Genetics ◽  
2001 ◽  
Vol 157 (2) ◽  
pp. 679-688
Author(s):  
Markus Niessen ◽  
Roger Schneiter ◽  
Rolf Nothiger

Abstract Sex-lethal (Sxl) is a central switch gene in somatic sexual development of Drosophila melanogaster. Female-specific expression of Sxl relies on autoregulatory splicing of Sxl pre-mRNA by SXL protein. This process requires the function of virilizer (vir). Besides its role in Sxl splicing, vir is essential for male and female viability and is also required for the production of eggs capable of embryonic development. We have identified vir molecularly and found that it produces a single transcript of 6 kb that is ubiquitously expressed in male and female embryos throughout development. This transcript encodes a nuclear protein of 210 kD that cannot be assigned to a known protein family. VIR contains a putative transmembrane domain, a coiled-coil region and PEST sequences. We have characterized five different alleles of vir. Those alleles that affect both sexes are associated with large truncations of the protein, while alleles that affect only the female-specific functions are missense mutations that lie relatively close to each other, possibly defining a region important for the regulation of Sxl.


2021 ◽  
Author(s):  
Biz R. Turnell ◽  
Luisa Kumpitsch ◽  
Klaus Reinhardt

AbstractSperm aging is accelerated by the buildup of reactive oxygen species (ROS), which cause oxidative damage to various cellular components. Aging can be slowed by limiting the production of mitochondrial ROS and by increasing the production of antioxidants, both of which can be generated in the sperm cell itself or in the surrounding somatic tissues of the male and female reproductive tracts. However, few studies have compared the separate contributions of ROS production and ROS scavenging to sperm aging, or to cellular aging in general. We measured reproductive fitness in two lines of Drosophila melanogaster genetically engineered to (1) produce fewer ROS via expression of alternative oxidase (AOX), an alternative respiratory pathway; or (2) scavenge fewer ROS due to a loss-of-function mutation in the antioxidant gene dj-1β. Wild-type females mated to AOX males had increased fecundity and longer fertility durations, consistent with slower aging in AOX sperm. Contrary to expectations, fitness was not reduced in wild-type females mated to dj-1β males. Fecundity and fertility duration were increased in AOX and decreased in dj-1β females, indicating that female ROS levels may affect aging rates in stored sperm and/or eggs. Finally, we found evidence that accelerated aging in dj-1β sperm may have selected for more frequent mating. Our results help to clarify the relative roles of ROS production and ROS scavenging in the male and female reproductive systems.


Genetics ◽  
2002 ◽  
Vol 161 (1) ◽  
pp. 195-204 ◽  
Author(s):  
Michael J Simmons ◽  
Kevin J Haley ◽  
Craig D Grimes ◽  
John D Raymond ◽  
Jarad B Niemi

Abstract Drosophila were genetically transformed with a hobo transgene that contains a terminally truncated but otherwise complete P element fused to the promoter from the Drosophila hsp70 gene. Insertions of this H(hsp/CP) transgene on either of the major autosomes produced the P transposase in both the male and female germlines, but not in the soma. Heat-shock treatments significantly increased transposase activity in the female germline; in the male germline, these treatments had little effect. The transposase activity of two insertions of the H(hsp/CP) transgene was not significantly greater than their separate activities, and one insertion of this transgene reduced the transposase activity of P(ry+, Δ2-3)99B, a stable P transgene, in the germline as well as in the soma. These observations suggest that, through alternate splicing, the H(hsp/CP) transgene produces a repressor that feeds back negatively to regulate transposase expression or function in both the somatic and germline tissues. The H(hsp/CP) transgenes are able to induce gonadal dysgenesis when the transposase they encode has P-element targets to attack. However, this ability and the ability to induce P-element excisions are repressed by the P cytotype, a chromosomal/cytoplasmic state that regulates P elements in the germline.


Genes ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 379
Author(s):  
Hou-Hong Zhang ◽  
Yu-Cheng Xie ◽  
Han-Jing Li ◽  
Ji-Chong Zhuo ◽  
Chuan-Xi Zhang

Intersex(ix), a gene involved in the sex-determining cascade of Drosophila melanogaster, works in concert with the female-specific product of doublesex (dsx) at the end of the hierarchy to implement the sex-specific differentiation of sexually dimorphic characters in female individuals. In this study, the ix homolog was identified in the brown planthopper (BPH), Nilaparvata lugens, which contained two splice variants expressed in both female and male insects. We found that Nlix played a vital role in the early nymphal development of BPH, showing an accumulated effect. RNAi-mediated knockdown of Nlix at 4th instar led to the external genital defects in both sexes, consequently resulting in the loss of reproductive ability in female and male individuals. After dsRNA injection, the males were normal on testes, while the females had defective ovarian development. Nlix was also required for early embryogenesis. Notably, when the dsNlix microinjection was performed in newly emerged females, the copulatory bursas were abnormally enlarged while the other tissues of the reproductive system developed normally. Our results demonstrated the pleiotropic roles of Nlix in embryogenesis and development of the reproductive system in a hemimetabolous insect species.


Genes ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 315
Author(s):  
Xu Yang ◽  
Kai Chen ◽  
Yaohui Wang ◽  
Dehong Yang ◽  
Yongping Huang

In insects, sex determination pathways involve three levels of master regulators: primary signals, which determine the sex; executors, which control sex-specific differentiation of tissues and organs; and transducers, which link the primary signals to the executors. The primary signals differ widely among insect species. In Diptera alone, several unrelated primary sex determiners have been identified. However, the doublesex (dsx) gene is highly conserved as the executor component across multiple insect orders. The transducer level shows an intermediate level of conservation. In many, but not all examined insects, a key transducer role is performed by transformer (tra), which controls sex-specific splicing of dsx. In Lepidoptera, studies of sex determination have focused on the lepidopteran model species Bombyx mori (the silkworm). In B. mori, the primary signal of sex determination cascade starts from Fem, a female-specific PIWI-interacting RNA, and its targeting gene Masc, which is apparently specific to and conserved among Lepidoptera. Tra has not been found in Lepidoptera. Instead, the B. mori PSI protein binds directly to dsx pre-mRNA and regulates its alternative splicing to produce male- and female-specific transcripts. Despite this basic understanding of the molecular mechanisms underlying sex determination, the links among the primary signals, transducers and executors remain largely unknown in Lepidoptera. In this review, we focus on the latest findings regarding the functions and working mechanisms of genes involved in feminization and masculinization in Lepidoptera and discuss directions for future research of sex determination in the silkworm.


Science ◽  
1958 ◽  
Vol 127 (3296) ◽  
pp. 473-474 ◽  
Author(s):  
W. D. KAPLAN ◽  
J. T. HOLDEN ◽  
B. HOCHMAN

Sign in / Sign up

Export Citation Format

Share Document