Find Dense Correspondence between High Resolution Non-rigid 3D Human Faces

Author(s):  
Jian Liu ◽  
Quan Zhang ◽  
Chaojing Tang
2020 ◽  
Vol 34 (03) ◽  
pp. 2544-2551 ◽  
Author(s):  
Nicola Zaltron ◽  
Luisa Zurlo ◽  
Sebastian Risi

Facial composites are graphical representations of an eyewitness's memory of a face. Many digital systems are available for the creation of such composites but are either unable to reproduce features unless previously designed or do not allow holistic changes to the image. In this paper, we improve the efficiency of composite creation by removing the reliance on expert knowledge and letting the system learn to represent faces from examples. The novel approach, Composite Generating GAN (CG-GAN), applies generative and evolutionary computation to allow casual users to easily create facial composites. Specifically, CG-GAN utilizes the generator network of a pg-GAN to create high-resolution human faces. Users are provided with several functions to interactively breed and edit faces. CG-GAN offers a novel way of generating and handling static and animated photo-realistic facial composites, with the possibility of combining multiple representations of the same perpetrator, generated by different eyewitnesses.


Author(s):  
Prof. Sandhya Ahire ◽  
Rupali Jadhao ◽  
Vaishali Gawai ◽  
Pooja Giri

Automated face reputation (AFR) technologies have made many improvements inside the converting international. Clever Attendance using actual-Time Face popularity is an actual-international solution that comes with the day after day activities of handling pupil attendance machine. Face recognition-based attendance machine is a process of spotting the student's face for taking attendance through using face bio-metrics primarily based on high-definition display video and different facts generation. In my face recognition assignment, a computer system can be able to find and apprehend human faces speedy and precisely in pictures or movies which might be being captured via a surveillance digital camera. Several algorithms and techniques were advanced for enhancing the performance of face reputation but the idea to be carried out here is deep getting to know. It allows in the conversion of the frames of the video into photos so that the face of the student can be effortlessly recognized for his or her attendance so that the attendance database can be effortlessly pondered automatically. Inside the ever-changing world, automatic face reputation (AFR) systems have finished numerous advancements. Smart Attendance with real-Time Face popularity is a sensible alternative for handling student attendance systems on a day-by-day foundation. Face reputation-primarily based attendance device is a way of recognizing a student's face for the motive of taking attendance, primarily based on high-resolution facial biometrics.


1967 ◽  
Vol 31 ◽  
pp. 45-46
Author(s):  
Carl Heiles

High-resolution 21-cm line observations in a region aroundlII= 120°,b11= +15°, have revealed four types of structure in the interstellar hydrogen: a smooth background, large sheets of density 2 atoms cm-3, clouds occurring mostly in groups, and ‘Cloudlets’ of a few solar masses and a few parsecs in size; the velocity dispersion in the Cloudlets is only 1 km/sec. Strong temperature variations in the gas are in evidence.


2019 ◽  
Vol 42 ◽  
Author(s):  
J. Alfredo Blakeley-Ruiz ◽  
Carlee S. McClintock ◽  
Ralph Lydic ◽  
Helen A. Baghdoyan ◽  
James J. Choo ◽  
...  

Abstract The Hooks et al. review of microbiota-gut-brain (MGB) literature provides a constructive criticism of the general approaches encompassing MGB research. This commentary extends their review by: (a) highlighting capabilities of advanced systems-biology “-omics” techniques for microbiome research and (b) recommending that combining these high-resolution techniques with intervention-based experimental design may be the path forward for future MGB research.


1994 ◽  
Vol 144 ◽  
pp. 593-596
Author(s):  
O. Bouchard ◽  
S. Koutchmy ◽  
L. November ◽  
J.-C. Vial ◽  
J. B. Zirker

AbstractWe present the results of the analysis of a movie taken over a small field of view in the intermediate corona at a spatial resolution of 0.5“, a temporal resolution of 1 s and a spectral passband of 7 nm. These CCD observations were made at the prime focus of the 3.6 m aperture CFHT telescope during the 1991 total solar eclipse.


1994 ◽  
Vol 144 ◽  
pp. 541-547
Author(s):  
J. Sýkora ◽  
J. Rybák ◽  
P. Ambrož

AbstractHigh resolution images, obtained during July 11, 1991 total solar eclipse, allowed us to estimate the degree of solar corona polarization in the light of FeXIV 530.3 nm emission line and in the white light, as well. Very preliminary analysis reveals remarkable differences in the degree of polarization for both sets of data, particularly as for level of polarization and its distribution around the Sun’s limb.


1988 ◽  
Vol 102 ◽  
pp. 41
Author(s):  
E. Silver ◽  
C. Hailey ◽  
S. Labov ◽  
N. Madden ◽  
D. Landis ◽  
...  

The merits of microcalorimetry below 1°K for high resolution spectroscopy has become widely recognized on theoretical grounds. By combining the high efficiency, broadband spectral sensitivity of traditional photoelectric detectors with the high resolution capabilities characteristic of dispersive spectrometers, the microcalorimeter could potentially revolutionize spectroscopic measurements of astrophysical and laboratory plasmas. In actuality, however, the performance of prototype instruments has fallen short of theoretical predictions and practical detectors are still unavailable for use as laboratory and space-based instruments. These issues are currently being addressed by the new collaborative initiative between LLNL, LBL, U.C.I., U.C.B., and U.C.D.. Microcalorimeters of various types are being developed and tested at temperatures of 1.4, 0.3, and 0.1°K. These include monolithic devices made from NTD Germanium and composite configurations using sapphire substrates with temperature sensors fabricated from NTD Germanium, evaporative films of Germanium-Gold alloy, or material with superconducting transition edges. A new approache to low noise pulse counting electronics has been developed that allows the ultimate speed of the device to be determined solely by the detector thermal response and geometry. Our laboratory studies of the thermal and resistive properties of these and other candidate materials should enable us to characterize the pulse shape and subsequently predict the ultimate performance. We are building a compact adiabatic demagnetization refrigerator for conveniently reaching 0.1°K in the laboratory and for use in future satellite-borne missions. A description of this instrument together with results from our most recent experiments will be presented.


Author(s):  
Robert M. Glaeser

It is well known that a large flux of electrons must pass through a specimen in order to obtain a high resolution image while a smaller particle flux is satisfactory for a low resolution image. The minimum particle flux that is required depends upon the contrast in the image and the signal-to-noise (S/N) ratio at which the data are considered acceptable. For a given S/N associated with statistical fluxtuations, the relationship between contrast and “counting statistics” is s131_eqn1, where C = contrast; r2 is the area of a picture element corresponding to the resolution, r; N is the number of electrons incident per unit area of the specimen; f is the fraction of electrons that contribute to formation of the image, relative to the total number of electrons incident upon the object.


Author(s):  
Glen B. Haydon

Analysis of light optical diffraction patterns produced by electron micrographs can easily lead to much nonsense. Such diffraction patterns are referred to as optical transforms and are compared with transforms produced by a variety of mathematical manipulations. In the use of light optical diffraction patterns to study periodicities in macromolecular ultrastructures, a number of potential pitfalls have been rediscovered. The limitations apply to the formation of the electron micrograph as well as its analysis.(1) The high resolution electron micrograph is itself a complex diffraction pattern resulting from the specimen, its stain, and its supporting substrate. Cowley and Moodie (Proc. Phys. Soc. B, LXX 497, 1957) demonstrated changing image patterns with changes in focus. Similar defocus images have been subjected to further light optical diffraction analysis.


Sign in / Sign up

Export Citation Format

Share Document