Contrast Analysis of Standardization Economic Contribution Rate

Author(s):  
Hong Zhang ◽  
Zhu Qiao ◽  
Fengjiao Sun
2013 ◽  
Vol 448-453 ◽  
pp. 4228-4234
Author(s):  
Zhong Min Wang ◽  
Lian Rong Zhao

In recent years, due to the increasingly cumulative effect of environmental problems caused by the development of resource-based industries, people ascribe the economic development lag brought about by the deformity of economic structure in resource-based regions to resource-based industries. The only way to economic structure optimization and transformation is to compress resource-based industries. After nearly a decade of economic transforming practice as well as under the support and guidance of the macro policy and the active cooperation of local governments, the non-resource-based industry has made considerable progress, while resource-based industry is still on the rise in the proportion of the total economy. This paper will, from the perspective of the economic contribution rate, analyze the contribution of the resource-based industry on our economy from 2003 to 2011 so as to prove the continued steady support of resource-based industry on China's society and economy.


2008 ◽  
Vol 8 (1) ◽  
pp. 499-506 ◽  
Author(s):  
Haixiang Guo ◽  
Fengqin Diao ◽  
Kejun Zhu ◽  
Jinling Li ◽  
Yanmin Xing

Author(s):  
J.A. Lambert ◽  
P.S. Dobson

The defect structure of ion-implanted silicon, which has been annealed in the temperature range 800°C-1100°C, consists of extrinsic Frank faulted loops and perfect dislocation loops, together with‘rod like’ defects elongated along <110> directions. Various structures have been suggested for the elongated defects and it was argued that an extrinsically faulted Frank loop could undergo partial shear to yield an intrinsically faulted defect having a Burgers vector of 1/6 <411>.This defect has been observed in boron implanted silicon (1015 B+ cm-2 40KeV) and a detailed contrast analysis has confirmed the proposed structure.


Author(s):  
J. J. Hren ◽  
W. D. Cooper ◽  
L. J. Sykes

Small dislocation loops observed by transmission electron microscopy exhibit a characteristic black-white strain contrast when observed under dynamical imaging conditions. In many cases, the topography and orientation of the image may be used to determine the nature of the loop crystallography. Two distinct but somewhat overlapping procedures have been developed for the contrast analysis and identification of small dislocation loops. One group of investigators has emphasized the use of the topography of the image as the principle tool for analysis. The major premise of this method is that the characteristic details of the image topography are dependent only on the magnitude of the dot product between the loop Burgers vector and the diffracting vector. This technique is commonly referred to as the (g•b) analysis. A second group of investigators has emphasized the use of the orientation of the direction of black-white contrast as the primary means of analysis.


Author(s):  
W. M. Kriven

Significant progress towards a fundamental understanding of transformation toughening in composite zirconia ceramics was made possible by the application of a TEM contrast analysis technique for imaging elastic strains. Spherical zirconia particles dispersed in a large-grained alumina matrix were examined by 1 MeV HVEM to simulate bulk conditions. A thermal contraction mismatch arose on cooling from the processing temperature of 1500°C to RT. Tetragonal ZrO2 contracted amisotropically with α(ct) = 16 X 10-6/°C and α(at) = 11 X 10-6/°C and faster than Al2O3 which contracted relatively isotropically at α = 8 X 10-6/°C. A volume increase of +4.9% accompanied the transformation to monoclinic symmetry at room temperature. The elastic strain field surrounding a particle before transformation was 3-dimensionally correlated with the internal crystallographic orientation of the particle and with the strain field after transformation. The aim of this paper is to theoretically and experimentally describe this technique using the ZrO2 as an example and thereby to illustrate the experimental requirements Tor such an analysis in other systems.


Author(s):  
Raja Subramanian ◽  
Kenneth S. Vecchio

The structure of stacking faults and partial dislocations in iron pyrite (FeS2) have been studied using transmission electron microscopy. Pyrite has the NaCl structure in which the sodium ions are replaced by iron and chlorine ions by covalently-bonded pairs of sulfur ions. These sulfur pairs are oriented along the <111> direction. This covalent bond between sulfur atoms is the strongest bond in pyrite with Pa3 space group symmetry. These sulfur pairs are believed to move as a whole during dislocation glide. The lattice structure across these stacking faults is of interest as the presence of these stacking faults has been preliminarily linked to a higher sulfur reactivity in pyrite. Conventional TEM contrast analysis and high resolution lattice imaging of the faulted area in the TEM specimen has been carried out.


Sign in / Sign up

Export Citation Format

Share Document