Hydropneumatic Suspension Systems

2022 ◽  
Author(s):  
Wolfgang Bauer
Keyword(s):  
2000 ◽  
Vol 28 (2) ◽  
pp. 119-137 ◽  
Author(s):  
P. Lemerle ◽  
P. Mistrot

Abstract Counterbalance trucks are machines in widespread use in every industrial sector. Unlike cars, they are not designed with suspension systems. Consequently, they are considered to be high vibrating vehicles. Nevertheless, like suspension seats, tires can be selected as suspension parts. This paper presents a new numerical model for the analysis of the vibratory behavior of counterbalance truck tires. This model was intended to be a part of a fork lift truck model, including axles, chassis, and cabin. All the results reported here show a close agreement between measurements and numerical simulations. Thus, it can predict the vibration emission values at the driving position and is used to compare the efficiency of solid tires with pneumatic tires in terms of transmitted vibration levels.


Alloy Digest ◽  
1998 ◽  
Vol 47 (5) ◽  

Abstract Inland DuraSpring is a high-strength microalloyed spring steel for use in high stress coil springs for automobile and light truck suspension systems. This bar product offers significant improvements in tensile strength, fatigue properties, and fracture toughness compared to conventional spring steels. This datasheet provides information on composition, hardness, and tensile properties as well asfracture toughness and fatigue. Filing Code: SA-496. Producer or source: Ispat Inland Inc.


2020 ◽  
Vol 53 (2) ◽  
pp. 14407-14412
Author(s):  
G. BEL HAJ FREJ ◽  
X. MOREAU ◽  
E. HAMROUNI ◽  
A. BENINE-NETO ◽  
V. HERNETTE

Author(s):  
Zhihua Niu ◽  
Sun Jin ◽  
Rongrong Wang ◽  
Yansong Zhang

Dynamic analysis is an essential task in the geometry design of suspension systems. Whereas the dynamic simulation based on numerical software like Adams is quite slowly and the existing analytical models of the nonlinear suspension geometry are mostly based on small displacement hypothesis, this paper aims to propose a whole-range dynamic model with high computational efficiency for planar double wishbone suspensions and further achieve the fast optimal design of suspension geometry. Selection of the new generalized coordinate and explicit solutions of the basic four-bar mechanism dramatically reduce the complexity of suspension geometry representation and provide analytical solutions for all of the time varying dimensions. By this means, the running speed and computational accuracy of the new model are guaranteed simultaneously. Furthermore, an original Matlab/Simulink implementation is given to maintain the geometric nonlinearity in the solving process of dynamic differential equations. After verifying its accuracy with an ADAMS prototype, the presented whole-range model is used in the vast-parameter optimization of suspension geometry. Since both kinematic and dynamic performances are evaluated in the objective function, the optimization is qualified to give a comprehensive suggestion to the design of suspension geometry.


Author(s):  
Kwon Joong Son ◽  
Eric P. Fahrenthold

Magnetorheological (MR) fluids, well established as components of a variety of suspension systems, may offer opportunities to improve the performance of fabric ballistic protection systems, which typically do not incorporate significant energy dissipation mechanisms. A series of ballistic impact experiments has been conducted to investigate the potential of MR fluid damped fabric suspension systems to improve upon current fabric barrier designs. The results indicate that for the simple fabric suspension systems tested, MR fluid damping does not improve upon the very high weight specific ballistic performance of state of the art aramid fibers.


Sign in / Sign up

Export Citation Format

Share Document